System identification and control of a fixed wing aircraft by using flight data obtained from x-plane flight simulator

Download
2018
Çetin, Ender
In this thesis, a linear state-space model of an aircraft is obtained by applying numerical integration system identification method. Flight test data used in the system identification is obtained by using X-Plane flight simulation program. In X-Plane Flight Simulator, the flight tests are made by using different excitations on the control surfaces. The linear models obtained by system identification are verified by applying the inputs to the linear model and then the outputs are compared with the X-Plane flight data. The identified linear models are used to design autopilots. Stability augmentation systems have been designed to alter dynamic character of the aircraft by using pole placement method. First the aircraft is made easier to fly by adding damping to its modes. Then damping is reduced to mimic dynamic behavior of an aircraft with poor handling qualities. Both system identification and feedback control studies are performed in Matlab/Simulink environment and connection with X-Plane is established via UDP (User Datagram Protocol)

Suggestions

Evaluation of rotorcraft system identification approaches
Kaymak, Serkan; Tekinalp, Ozan; Kutay, Ali Türker; Department of Aerospace Engineering (2013)
This thesis addresses rotorcraft system identification approaches and estimating the stability and control parameters for linear system identification of a helicopter in hover. Output error and least square methods are used for the system identification. Inputs of the system identification analysis are obtained from the nonlinear helicopter model written in FLIGHTLAB commercial software environment. A linear helicopter model is used for identification. For validation, results obtained from identified helico...
System identification using flight test data
Şimşek, Orkun; Tekinalp, Ozan; Department of Aerospace Engineering (2014)
In this study, a linear model of an unmanned aerial vehicle (UAV) is developed by using frequency domain system identification methods. The data used in the identification methods are obtained by performing flight tests. To obtain appropriate flight test data for identification process, flight test maneuvers are designed. These flight test data are used in two main frequency domain system identification methods, namely, transfer function modeling and state space modeling. The linear models obtained by using...
Robust flight and landing autopilot /
Durmaz, Ozan; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2015)
In this thesis, a mathematical model of a small unmanned aircraft is implemented where the static and dynamic stability derivative coefficients are found by Digital DATCOM software. Several control methods are applied such as PID control, LQT, SMC. Two types of Sliding mode controllers are designed using different sliding surfaces. Linearized aircraft models which are trimmed at two different airspeeds are used to design controllers. A guidance block is implemented to guide aircraft with waypoints. Differen...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Modeling and simulation of a navigation system with an IMU and a Magnetometer
Kayasal, Uğur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2007)
In this thesis, the integration of a MEMS based inertial measurement unit and a three axis solid state magnetometer are studied. It is a fact that unaided inertial navigation systems, especially low cost MEMS based navigation systems have a divergent behavior. Nowadays, many navigation systems use GPS aiding to improve the performance, but GPS may not be applicable in some cases. Also, GPS provides the position and velocity reference whereas the attitude information is extracted through estimation filters. ...
Citation Formats
E. Çetin, “System identification and control of a fixed wing aircraft by using flight data obtained from x-plane flight simulator,” M.S. - Master of Science, Middle East Technical University, 2018.