Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling, simulation, synthesis and structural characterization of Ni-Fe based nanoalloys
Download
index.pdf
Date
2018
Author
Irmak, Ece Arslan
Metadata
Show full item record
Item Usage Stats
353
views
283
downloads
Cite This
There is a growing interest in the simulation and production of nanoalloys because the unique chemical and physical properties of nanoalloys can be tuned, and completely new structural motifs can be created by varying the type and composition of constituent elements, the atomic ordering, size, and shape of the nanoparticles. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry, aerospace and stealth industry, magnetic biomedical applications and computer hardware industry. The purpose of this study is to analyze the structural properties of the magnetic nanoalloys at atomistic level and to establish a bridge between theoretical and experimental studies, in order to interpret many of experimental results and to predict the physical and chemical properties of the nanoalloys. In the theoretical part, structural evolutions of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). In this regard, structural evolution of the bimetallic FeNi3 crystalline and amorphous nanoalloys has been investigated by means of MD simulation combined with Embedded Atom Model (EAM) with taking into account the effect of temperature (300-1700 K), particle size (2 nm-6 nm) and shape (spherical and cubic) on radial distribution functions, inter-atomic distances, coordination numbers, core-to-surface concentration profiles, surface energies and Voronoi analysis. From the molecular dynamics simulations, it has been clearly observed that the structural evolution, melting point and atomic arrangements of the nanoparticles exhibited strongly size and shape dependent behavior. As the particle size of the simulated nanoparticles increased, the particles became more heat-resistant and mostly preserved their stable crystalline structure, shape and mixing pattern at high temperatures. Also, it has been observed that the 6 nm nanoparticles owned the FCC lattice structure at room temperature which is consistent with the L12-type ordered structure of the synthesized via mechanical alloying FeNi3 nanoparticles with soft magnetic properties. In the experimental part of the study, FeNi3 bimetallic nanoalloys were synthesized via mechanical alloying in a planetary high energy ball milling. The experimental studies were carried out in three parts. Firstly, mechanical alloying in high energy dry planetary ball milling with 250 and 400 rpm was applied to obtain FeNi3 nanoparticles. Afterward, two-step mechanical alloying was performed in which dry milling was followed by surfactant-assisted ball milling to investigate the surfactant (oleic acid and oleylamine) and solvent (heptane) effect on the structure, size, and properties of the FeNi3 nanoalloys. The structural and magnetic properties of the alloyed nanoparticles have been analyzed using XRD, SEM, EDS, and VSM techniques. In terms of the particle size, it was found that the amount of nano-sized particles raised with increasing milling time and milling speed, and consequently the magnetic properties of the particles varied. However, no significant effect of surfactants on the particle size was observed. The smallest, L12-type ordered FeNi3 nanopowders with 5.82 nm crystallite size, -0.46% strain value, and 3.54263 Å lattice parameter, showing soft magnetic properties, were synthesized by mechanical alloying with 400rpm under dry atmosphere after 80 h milling time.
Subject Keywords
Iron alloys.
,
Nickel alloys.
,
Nanostructures.
,
Nanotechnology.
URI
http://etd.lib.metu.edu.tr/upload/12622179/index.pdf
https://hdl.handle.net/11511/27340
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Mechanical properties comparison of strut-based and triply periodic minimal surface lattice structures produced by electron beam melting
Sokollu, Baris; Gulcan, Orhan; Konukseven, Erhan İlhan (2022-12-01)
The aim of this study is to make a comparative assessment of the compression and tensile behavior of two strut -based (body-centered cubic, BCC, and face-centered cubic, FCC) and three triply periodic minimum surfaces (gyroid, primitive, diamond) lattice structures produced by electron beam melting method from Ti6Al4V powder material. Compression and tension tests were performed and compared with finite element analysis results. Moreover, scanning electron microscope analysis for dimensional variation and o...
Investigation of the structural properties of low dimensional nanostructures : molecular dynamics simulations
Özdamar, Burak; Erkoç, Şakir; Department of Physics (2013)
This study aims to investigate the structural and thermodynamic properties of nanostructures which are generated from different atoms and geometries. The nanostructures in question are boron nitride nanoparticles, silicon nanowires along with sawtooth-like graphene nanoribbons. The goal is to calculate the specific heat values of boron nitride nanoparticles while the mechanical properties of the other nanostructures are investigated under uniaxial strain. The structural behaviors of these generated nanopart...
Electronic properties of open-ended single wall carbon nanotubes
Turker, L; Erkoç, Şakir (2002-01-31)
We have investigated the electrostatic, charge and orbital properties of open-ended single-wall carbon nanotubes in zigzag geometry. The calculations were performed by using the AM1-RHF semiempirical molecular orbital method. It has been found that the tubes with smaller radius behave like a metallic solid whereas the tubes with larger radius behave like a metallic hollow cylinder.
Investigation of solidification and crystallization of iron based bulk amorphous alloys
Erdiller, Emrah Salim; Akdeniz, Mahmut Vedat; Department of Metallurgical and Materials Engineering (2004)
The aim of this study is to form a theoretical model for simulation of glass forming ability of Fe ? Based bulk amorphous alloys, to synthesize Fe ? based multicomponent glassy alloys by using the predictions of the theoretical study, and to analyze the influence of crystallization and solidification kinetics on the microstructural features of this amorphous alloys. For this purpose, first, glass forming ability of Fe ? (Mo, B, Cr, Nb, C) ? X ( X = various alloying elements, selected from the periodic table...
Design Parameters and Principles of Liquid-Crystal-Templated Synthesis of Polymeric Materials via Photolithography
AKDENİZ, BURAK; Büküşoğlu, Emre (American Chemical Society (ACS), 2019-10-08)
The design parameters and principles for the synthesis of polymeric microscopic objects using a method that combines photolithography and liquid crystal (LC) molecular templates have been demonstrated. Specifically, mixtures of a reactive mesogen (RM257) and nonreactive LC (E7) were polymerized using UV light and a photomask. We used photomasks with circular, triangular, rectangular, square, star-shaped, and heart-shaped features to provide initial shapes to the objects. Then, the unreacted parts were extra...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. A. Irmak, “Modelling, simulation, synthesis and structural characterization of Ni-Fe based nanoalloys,” M.S. - Master of Science, Middle East Technical University, 2018.