Realization of human gait in virtual fluid environment on a robotic gait trainer for therapeutic purposes

2018-7
Ertop, Tayfun Efe
Yuksel, Tolga
Konukseven, Erhan İlhan
Patients with disorders such as spinal cord injury, cerebral palsy and stroke can perform full gait when assisted, which progressively helps them regain the ability to walk. A very common way to create assistive effects is aquatic therapy. Aquatic environment also creates resistive effects desired for strength building. In this study, realization of a virtual fluid environment on a robotic gait trainer is presented as an alternative method. A model was created to determine torques and forces acting on the human body while performing gait in a fluid environment. The developed model was implemented on a robotic gait trainer. By adjusting the virtual fluid model parameters, precise control over assistive and resistive effects during gait was achieved without enforcing any pre-defined gait pattern. The real-time gait phase information required by the fluid model to determine torques was provided with a developed algorithm which only uses kinematic gait data. Experiments with healthy subjects were done using the robotic gait trainer to verify the gait phase algorithm, and to compare gait characteristics obtained in virtual land and water environments with the literature. Additional experiments were performed with the robotic system to assess effects of changing fluid model parameters to healthy subject gait characteristics. The results show that force and torque effects of virtual fluid environment on robotic gait trainer were achieved. The gait phase algorithm was shown to provide smooth transition between phases. Also, significant changes in gait characteristics were observed by modifying fluid model parameters.
Robotics and Autonomous Systems

Suggestions

Realization of virtual fluid environment on a robotic gait trainer for therapeutic purposes
Ertop, Tayfun Efe; Konukseven, Erhan İlhan; Koku, Ahmet Buğra; Department of Mechanical Engineering (2017)
Patients with disorders such as spinal cord injury, cerebral palsy and stroke can perform full gait when assisted, which progressively helps them regain the ability to walk. A very common way to create assistive effects is aquatic therapy. Aquatic environment also creates resistive effects desired for increasing muscle activity. Simulating the fluid environment using a robotic system would enable therapists to adjust various fluid parameters so that the therapy is tailored to each patient’s unique state. In...
Effects of robot-assisted gait training in chronic stroke patients treated by botulinum toxin-a: A pivotal study
Erbil, Dursun; Tugba, Gokbel; Murat, Topcu Hasan; Melike, Akarsu; Merve, Akyuez; Cagla, Karacan; Mehmetali, Ciftci Can; Akay, Ozturk; DURSUN, NİGAR (Wiley, 2018-07-01)
ObjectiveTo investigate combined effects of robot-assisted training (RAT) and physical therapy versus physical therapy only on balance and gait function of chronic stroke patients after botulinum toxin-A (BoNT-A) treatment.
Tissue Engineered, Guided Nerve Tube Consisting of Aligned Neural Stem Cells and Astrocytes
Yucel, Deniz; Kose, Gamze Torun; Hasırcı, Vasıf Nejat (2010-12-01)
Injury of the nervous system, particularly in the spinal cord, impairs the quality of life of the patient by resulting in permanent loss of neurologic function. The main limitation in spinal cord regeneration is the lack of extracellular matrix to guide nerves for functional recovery of the transected nerve tissue. In the present study, a tissue engineered nerve tube was prepared by wrapping neural stem cells (NSCs) on aligned fibers using a micropatterned film with astrocytes aligned along the microgrooves...
Estimation of Ground Reaction Forces Using Low-Cost Instrumented Forearm Crutches
Seylan, Çağlar; Saranlı, Uluç (2018-06-01)
Instrumented crutches are useful for many rehabilitation tasks, including monitoring the correctness of crutch use, analyzing gait properties for patients with lower-limb impairments, as well as providing sensory data for controlling lower-body robotic orthoses. In this paper, we describe the design and analysis of an instrumented crutch system equipped with low-cost accelerometer and pressure sensors to estimate all components of the ground reaction force (GRF), providing a well-defined and physically mean...
Design of a modular orthopedic implant
Erkan, Onur Mert; Tönük, Ergin; Department of Mechanical Engineering (2015)
Bone fracture due to trauma and bone defects by birth are very common in orthopedics, making their treatment crucial. In this study, a novel design to treat upper arm fractures is introduced and assessed mechanically. The design offers medical doctors longitudinal and angular flexibility when compared to widely used orthopedic plates. Hence the new design covers a variety of fracture types. Earlier conceptual designs are reviewed to demonstrate the progress of design. Mechanical performance of the final des...
Citation Formats
T. E. Ertop, T. Yuksel, and E. İ. Konukseven, “Realization of human gait in virtual fluid environment on a robotic gait trainer for therapeutic purposes,” Robotics and Autonomous Systems, pp. 59–68, 2018, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/28578.