Targeting PI3K/Akt/mTOR Pathway Identifies Differential Expression and Functional Role of IL8 in Liver Cancer Stem Cell Enrichment

Download
2019-11-01
Kahraman, Deniz Cansen
Atalay, Rengül
Activation of the PI3K/Akt/mTOR pathway is an important signaling mechanism involved in the development and the progression of liver cancer stem cell (LCSC) population during acquired Sorafenib resistance in advanced hepatocellular carcinoma (HCC). Therefore, identification of novel therapeutic targets involving this pathway and acting on LCSCs is highly essential. Here, we analyzed the bioactivities and the molecular pathways involved in the action of small-molecule PI3K/Akt/mTOR pathway inhibitors in comparison with Sorafenib, DNA intercalators, and DAPT (CSC inhibitor) on CD133/EpCAM-positive LCSCs. Sorafenib andDNA intercalators lead to the enrichment of LCSCs, whereas Rapamycin and DAPT significantly reduced CD133/EpCAM positivity. Sequential treatment with Rapamycin followed by Sorafenib decreased the ratio of LCSCs as well as their sphere formation capacity, as opposed to Sorafenib alone. Under the stress of the inhibitors, differential expression analysis of 770 cancer pathway genes using network-based systems biology approach singled out IL8 expression association with LCSCs. Furthermore, IL8 secretion and LCSC enrichment ratio was also positively correlated. Following IL8 inhibition with its receptor inhibitor Reparixin or siRNA knockdown, LCSC features of HCC cells were repressed, and sensitivity of cells to Sorafenib increased significantly. Furthermore, inflammatory cytokines (IL8, IL1 beta, and IL11) were also upregulated upon treatment with HCC-approved kinase inhibitors Sorafenib and Regorafenib. Hence, chemotherapeutic stress alters inflammatory cytokine gene expression in favor of hepatic CSC population survival. Autocrine IL8 signaling is identified as a critical event, and its inhibition provides a promising complimentary therapeutic approach for the prevention of LCSC population enrichment.
MOLECULAR CANCER THERAPEUTICS

Suggestions

Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation
BARAN, YUSUF; Bielawski, Jacek; Gündüz, Ufuk; Ogretmen, Besim (2011-10-01)
Purpose Drug resistance presents a major obstacle for the treatment of some patients with chronic myeloid leukemia (CML). Pro-apoptotic ceramide mediates imatinib-induced apoptosis, and metabolism of ceramide by glucosylceramide synthase (GCS) activity, converting ceramide to glucosyl ceramide, might contribute to imatinib resistance. In this study, we investigated the role of ceramide metabolism by GCS in the regulation of imatinib-induced apoptosis in drug-sensitive and drug-resistant K562 and K562/IMA-0....
Investigation of the therapeutic effect of sodium butyrate in Caco-2 colon cancer cell line by using ATR-FTIR spectroscopy
Çelik, Buket; Bek, Alpan; Özek, Nihal Şimşek; Department of Micro and Nanotechnology (2018)
Sodium butyrate (NaBt), as one of the HDACi, has been demonstrated that it induces apoptosis, cell cycle arrest, the inhibition of angiogenesis, metastasis and gene expression changes. To date, there are several studies perfomed to investigate its therapeutic effect; however, theexact mechanism at molecular level is not clear yet. Therefore, the current thesis was aimed to clarify the action/theurapeutic potential mechanisms of sodium butyrate in Caco2 colon cancer cell line at molecular level using ATR-FTI...
Enrichment of MCF7 breast cancer cells from leukocytes through continuous flow dielectrophoresis
Çağlayan, Zeynep; Külah, Haluk; Department of Electrical and Electronics Engineering (2018)
Circulating tumor cells (CTCs) are cancerous cells detached from a primary tumor site and enter the bloodstream, causing the development of new tumors in a secondary site. Therefore, their detection in blood is critical to assess the metastatic progression and to guide the line of the therapy. However, the rarity of CTCs in the bloodstream and the lack of suitable detection tool hinders their use as a biomarker in malignancies. Recent advances in microfluidic technologies enabled development of point-of-car...
Evaluation of methylation profiles of an epidermal growth factor receptor gene in a head and neck squamous cell carcinoma patient group
Mutlu, M.; Mutlu, Pelin; Azarkan, S.; Baylr, Ö.; Öcal, B.; Saylam, G.; KORKMAZ, MEHMET HAKAN (2021-03-23)
Upregulation of the epidermal growth factor receptor (EGFR) gene has shown an important impact on the development of head and neck cancers due to its important regulation role on multiple cell signaling pathways. The aim of this study was to investigate the methylation pattern of the promoter region of the EGFR gene between head and neck squamous cell carcinoma (HNSCC) patients and a control group. Forty-seven unrelated HNSCC patients, clinically diagnosed at the Department of Otorhinolaryngology, Dlşkapl Y...
Capture of circulating tumor cells from blood on modified gold surfaces inside the microfluidic channels
Çetin, Didem; Külah, Haluk; Department of Biomedical Engineering (2019)
Detection of circulating tumor cells (CTCs) from the bloodstream has a critical role in diagnosing and treatment of cancer. However, the number of CTCs in blood compared to other blood cells are extremely rare. In this thesis, various surface modifications strategies for detection of CTCs are studied in order to be used in the microfluidic detection systems. Functionalizing the gold surface with Self Assembled Monolayers (SAMs) used for attaching the EpCAM antibodies, which made possible to immobilize EpCAM...
Citation Formats
D. C. Kahraman and R. Atalay, “Targeting PI3K/Akt/mTOR Pathway Identifies Differential Expression and Functional Role of IL8 in Liver Cancer Stem Cell Enrichment,” MOLECULAR CANCER THERAPEUTICS, pp. 2146–2157, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/30266.