Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Feasibility of a porcine oral mucosa equivalent: A preclinical study
Date
2012-08-01
Author
Kinikoglu, Beste
Hemar, Julie
Hasırcı, Vasıf Nejat
Breton, Pierre
Damour, Odile
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
0
downloads
Oral tissue engineering aims to treat and fill tissue deficits caused by congenital defects, facial trauma, or malignant lesion surgery, as well as to study the biology of oral mucosa. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA) require a large animal model to evaluate cell-based devices, including tissue-engineered oral mucosa, prior to initiating human clinical studies. Porcine oral mucosa is non-keratinized and resembles that of humans more closely than any other animal in terms of structure and composition; however, there have not been any reports on the reconstruction of a porcine oral mucosa equivalent, probably due to the difficulty to culture porcine fibroblasts. In this study, we demonstrate the feasibility of a 3D porcine oral mucosa equivalent based on a collagen-GAG-chitosan scaffold, as well as reconstructed porcine epithelium by using an amniotic membrane as support, or without any support in form of epithelial cell sheets by using thermoresponsive culture plates. Explants technique was used for the isolation of the porcine fibroblasts and a modified fibroblast medium containing 20% fetal calf serum was used for their culture. The histological and transmission electron microscopic analyses of the resulting porcine oral mucosa models showed the presence of non-keratinized epithelia expressing keratin 13, the major differentiation marker of non-keratinized oral mucosa, in all models, and the presence of newly synthesized collagen fibers in the lamina propria equivalent of the full-thickness model, indicating the functionality of porcine fibroblasts.
Subject Keywords
Porcine oral mucosa equivalent
,
Oral tissue engineering
,
3D oral mucosa model
,
Reconstructed epithelium
,
Epithelial cell sheet
,
Fibroblasts
,
Epithelial cells
URI
https://hdl.handle.net/11511/30456
Journal
ARTIFICIAL CELLS BLOOD SUBSTITUTES AND BIOTECHNOLOGY
DOI
https://doi.org/10.3109/10731199.2011.644293
Collections
Graduate School of Natural and Applied Sciences, Article