Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Tissue engineering of full-thickness human oral mucosa
Download
index.pdf
Date
2010
Author
Kınıkoğlu, Beste
Metadata
Show full item record
Item Usage Stats
230
views
101
downloads
Cite This
Tissue engineered human oral mucosa has the potential to fill tissue deficits caused by facial trauma or malignant lesion surgery. It can also help elucidate the biology of oral mucosa and serve as an alternative to in vivo testing of oral care products. The aim of this thesis was to construct a tissue engineered full-thickness human oral mucosa closely mimicking the native tissue. To this end, the feasibility of the concept was tested by co-culturing fibroblasts and epithelial cells isolated from normal human oral mucosa biopsies in a collagen-glycosaminoglycan-chitosan scaffold, developed in our laboratory to construct a skin equivalent. An oral mucosal equivalent closely mimicking the native one was obtained and characterized by histology, immunohistochemistry and transmission electron microscopy. Using the same model, the influence of mesenchymal cells on oral epithelial development was investigated by culturing epithelial cells on lamina propria, corneal stroma and dermal equivalents. They were found to significantly influence the thickness and the ultrastructure of the epithelium. Finally, in order to improve the adhesiveness of conventional scaffolds, an elastin-like recombinamer (ELR) containing the cell adhesion tripeptide, RGD, was used in the production of novel bilayer scaffolds employing lyophilization and electrospinning. These scaffolds were characterized by mercury porosimetry, scanning electron microscopy and mechanical testing. In vitro tests revealed positive contribution of ELR on the proliferation of both fibroblasts and epithelial cells. It was thus possible to construct a viable oral mucosa equivalent using the principles of tissue engineering.
Subject Keywords
Oral mucosa engineering.
,
Epithelial development.
URI
http://etd.lib.metu.edu.tr/upload/12612770/index.pdf
https://hdl.handle.net/11511/20764
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
RECONSTRUCTION OF A FULL-THICKNESS COLLAGEN-BASED HUMAN ORAL MUCOSAL EQUIVALENT
Kinikoglu, B.; Auxenfans, C.; Pierrillas, P.; Burillon, C.; Hasırcı, Vasıf Nejat; Damour, O. (2009-07-01)
Tissue engineered human oral mucosa has the potential to be applied to the closure of surgical wounds after tissue deficits due to facial trauma, malignant lesion surgery or preposthetic procedure. It can also be used to elucidate the biology and pathology of oral mucosa and as a model alternative to animals for safety testing of oral care products. Using the technology previously developed in our laboratory for the production of a skin equivalent, we were able to reconstruct a nonkeratinized full-thickness...
Feasibility of a porcine oral mucosa equivalent: A preclinical study
Kinikoglu, Beste; Hemar, Julie; Hasırcı, Vasıf Nejat; Breton, Pierre; Damour, Odile (2012-08-01)
Oral tissue engineering aims to treat and fill tissue deficits caused by congenital defects, facial trauma, or malignant lesion surgery, as well as to study the biology of oral mucosa. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA) require a large animal model to evaluate cell-based devices, including tissue-engineered oral mucosa, prior to initiating human clinical studies. Porcine oral mucosa is non-keratinized and resembles that of humans more closely than any other animal...
Tissue engineering of oral mucosa: a shared concept with skin
Kinikoglu, Beste; Damour, Odile; Hasırcı, Vasıf Nejat (2015-03-01)
Tissue-engineered oral mucosa, in the form of epithelial cell sheets or full-thickness oral mucosa equivalents, is a potential solution for many patients with congenital defects or with tissue loss due to diseases or tumor excision following a craniofacial cancer diagnosis. In the laboratory, it further serves as an in vitro model, alternative to in vivo testing of oral care products, and provides insight into the behavior of the oral mucosal cells in healthy and pathological tissues. This review covers the...
Investigation of surface structure and biocompatibility of chitosan-coated zirconia and alumina dental abutments
Kalyoncuoglu, Ulku Tugba; Yilmaz, Bengi; Koc, Serap Gungor; Evis, Zafer; ARPACI, PEMBEGÜL UYAR; Kansu, Gulay (Wiley, 2018-12-01)
Background: For long-term success of dental implants, it is essential to maintain the health of the surrounding soft tissue barrier, which protects the bone-implant interface from the microorganisms. Although implants based on titanium and its alloys still dominate the dental implant market, alumina (Al2O3) and zirconia (ZrO2) implant systems are widely used in the area. However, they provide smooth and bioinert surfaces in the transmucosal region, which poorly integrate with the surrounding tissues.
Additive manufacturing of biodegradable magnesium implants and scaffolds: Review of the recent advances and research trends
Sezer, Nurettin; Evis, Zafer; Koc, Muammer (2021-03-01)
Synthetic grafting needs improvements to eliminate secondary surgeries for the removal of implants after healing of the defected tissues. Tissue scaffolds are engineered to serve as temporary templates, which support the affected tissue and gradually degrade through the healing period. Beside mechanical function to withstand the anatomic loading conditions, scaffolds should also provide a decent biological function for the diffusion of nutrients and oxygen to the cells, and excretion of the wastes from the ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. Kınıkoğlu, “Tissue engineering of full-thickness human oral mucosa,” Middle East Technical University, 2010.