A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite

2017-04-07
Soldatkina, O. V.
Soldatkin, O. O.
Kasap, B. Ozansoy
Kucherenko, D. Yu.
Kucherenko, I. S.
Akata Kurç, Burcu
Dzyadevych, S. V.
In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed on silicalite demonstrated high sensitivity to glutamate. The linear range of detection was from 2.5 to 450 mu M, and the limit of glutamate detection was 1 mu M. It was shown that the proposed biosensors were characterized by good response reproducibility during hours of continuous work and operational stability for several days. The developed biosensors could be applied for determination of glutamate in real samples.
NANOSCALE RESEARCH LETTERS

Suggestions

An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides
Kesik, Melis; Kanik, Fulya Ekiz; Turan, Janset; Kolb, Marit; TİMUR, SUNA; Bahadir, Muefit; Toppare, Levent Kamil (2014-12-15)
A novel amperometric biosensor based on a conducting polymer using multi walled carbon nanotube modified electrode was developed for detection of organophosphorus pesticides. Acetylcholinesterase (AChE) was successfully immobilized by covalent linkage on the modified graphite electrode. Carbon nanotubes were functionalized by electrochemical treatment. A conducting polymer; poly(4-( 2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly( SNS-NH2)) was synthesized via electropolymerization to examine its ma...
A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite
Velychko, T. P.; Soldatkin, O. O.; Melnyk, V. G.; Marchenko, S. V.; Kirdeciler, S. K.; Akata Kurç, Burcu; Soldatkin, A. P.; El'skaya, A. V.; Dzyadevych, S. V. (2016-02-25)
Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lo...
A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction
GOKOGLAN, Tugba Ceren; SOYLEMEZ, Saniye; KESIK, Melis; UNAY, Hande; Sayin, Serkan; Yildiz, Huseyin Bekir; Çırpan, Ali; Toppare, Levent Kamil (2015-01-01)
In this study, a novel amperometric glucose biosensor based on a selenium comprising conducting polymer and calixarene was developed. Firstly, poly(2-(2-octyldodecyl)-4,7-di(selenoph-2-yl)-2H-benzo[d][1,2,3]-triazole), poly((SBTz)) was electrodeposited onto a graphite electrode by an electropolymerization technique. Then, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture was used for the improvement of biosensor characteristics. GOx, as a model enzyme was immobilized on the modified electr...
A New Amperometric Biosensor for Diamine: Use of a Conducting Polymer Layer
Al Layla, Alaa M. T.; Turkarslan, Ozlem; KURBANOĞLU, SEVİNÇ; Sulaiman, Saddalah T.; Al-Flayeh, K. A.; Toppare, Levent Kamil (2013-01-01)
Diamine oxidase (DAO) from Porcine kidney E.C. 1.4.3.6 is used for the amperometric detection of biogenic amines. Immobilization of enzyme is performed via entrapment in conducting poly (3,4-ethylenedioxythiophene) during electrochemical polymerization. The responses of the enzyme electrodes are measured via monitoring current at +0.7 V. In order to minimize the common interferences, an over oxidized film of polypyrrole is introduced to the electrode. Thickness of the film, kinetic parameters, substrate spe...
Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars
Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata Kurç, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V. (2016-02-03)
The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four-to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme ...
Citation Formats
O. V. Soldatkina et al., “A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite,” NANOSCALE RESEARCH LETTERS, pp. 0–0, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32432.