A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite

2016-02-25
Velychko, T. P.
Soldatkin, O. O.
Melnyk, V. G.
Marchenko, S. V.
Kirdeciler, S. K.
Akata Kurç, Burcu
Soldatkin, A. P.
El'skaya, A. V.
Dzyadevych, S. V.
Development of a conductometric biosensor for the urea detection has been reported. It was created using a non-typical method of the recombinant urease immobilization via adsorption on nanoporous particles of silicalite. It should be noted that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, and high reproducibility (RSD = 5.1 %). The linear range of urea determination by using the biosensor was 0.05-15 mM, and a lower limit of urea detection was 20 mu M. The bioselective element was found to be stable for 19 days. The characteristics of recombinant urease-based biomembranes, such as dependence of responses on the protein and ion concentrations, were investigated. It is shown that the developed biosensor can be successfully used for the urea analysis during renal dialysis.
NANOSCALE RESEARCH LETTERS

Suggestions

A Novel Amperometric Glutamate Biosensor Based on Glutamate Oxidase Adsorbed on Silicalite
Soldatkina, O. V.; Soldatkin, O. O.; Kasap, B. Ozansoy; Kucherenko, D. Yu.; Kucherenko, I. S.; Akata Kurç, Burcu; Dzyadevych, S. V. (2017-04-07)
In this work, we developed a new amperometric biosensor for glutamate detection using a typical method of glutamate oxidase (GlOx) immobilization via adsorption on silicalite particles. The disc platinum electrode (d = 0.4 mm) was used as the amperometric sensor. The procedure of biosensor preparation was optimized. The main parameters of modifying amperometric transducers with a silicalite layer were determined along with the procedure of GlOx adsorption on this layer. The biosensors based on GlOx adsorbed...
A novel urea conductometric biosensor based on zeolite immobilized urease
Kirdeciler, Salih Kaan; Soy, Esin; Öztürk, Seçkin; Kucherenko, Ivan; Soldatkin, Oleksandr; Dzyadevych, Sergei; Akata Kurç, Burcu (2011-09-15)
A new approach was developed for urea determination where a thin film of silicalite and zeolite Beta deposited onto gold electrodes of a conductometric biosensor was used to immobilize the enzyme. Biosensor responses, operational and storage stabilities were compared with results obtained from the standard membrane methods for the same measurements. For this purpose, different surface modification techniques, which are simply named as Zeolite Membrane Transducers (ZMTs) and Zeolite Coated Transducers (ZCTs)...
A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction
GOKOGLAN, Tugba Ceren; SOYLEMEZ, Saniye; KESIK, Melis; UNAY, Hande; Sayin, Serkan; Yildiz, Huseyin Bekir; Çırpan, Ali; Toppare, Levent Kamil (2015-01-01)
In this study, a novel amperometric glucose biosensor based on a selenium comprising conducting polymer and calixarene was developed. Firstly, poly(2-(2-octyldodecyl)-4,7-di(selenoph-2-yl)-2H-benzo[d][1,2,3]-triazole), poly((SBTz)) was electrodeposited onto a graphite electrode by an electropolymerization technique. Then, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture was used for the improvement of biosensor characteristics. GOx, as a model enzyme was immobilized on the modified electr...
Application of enzyme/zeolite sensor for urea analysis in serum
Soldatkin, O. O.; Kucherenko, I. S.; Marchenko, S. V.; Kasap, B. Ozansoy; Akata Kurç, Burcu; Soldatkin, A. P.; Dzyadevych, S. V. (2014-09-01)
Urea biosensor based on zeolite-adsorbed urease was applied for analysis of blood serum samples. It should be noted, that this biosensor has a number of advantages, such as simple and fast performance, the absence of toxic compounds during biosensor preparation, high reproducibility and repeatability (RSD = 9% and 4%, respectively). The linear range of urea determination by using the biosensor was 0.003-0.75 mM, and the limit of urea detection was 3 mu M. The method of standard addition was used for analysi...
An acetylcholinesterase biosensor based on a conducting polymer using multiwalled carbon nanotubes for amperometric detection of organophosphorous pesticides
Kesik, Melis; Kanik, Fulya Ekiz; Turan, Janset; Kolb, Marit; TİMUR, SUNA; Bahadir, Muefit; Toppare, Levent Kamil (2014-12-15)
A novel amperometric biosensor based on a conducting polymer using multi walled carbon nanotube modified electrode was developed for detection of organophosphorus pesticides. Acetylcholinesterase (AChE) was successfully immobilized by covalent linkage on the modified graphite electrode. Carbon nanotubes were functionalized by electrochemical treatment. A conducting polymer; poly(4-( 2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)benzenamine) (poly( SNS-NH2)) was synthesized via electropolymerization to examine its ma...
Citation Formats
T. P. Velychko et al., “A Novel Conductometric Urea Biosensor with Improved Analytical Characteristic Based on Recombinant Urease Adsorbed on Nanoparticle of Silicalite,” NANOSCALE RESEARCH LETTERS, pp. 0–0, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32363.