Prediction models for discharge estimation in rectangular compound broad-crested weirs

2014-04-01
Al-Khatib, Issam A.
Göğüş, Mustafa
Experimental results of the flow of water over 9 different rectangular compound broad-crested weirs with varying lower weir crest width and step height were analyzed to develop prediction models for discharge estimation. The compound cross sections were formed by a combination of three sets of step heights and three sets of lower weir crest widths in a horizontal laboratory flume of 11.0 m length, 0.29 m width and 0.70 m depth. Flow depths at the approach channels were measured for a wide range of discharges. The dependence of the discharge coefficient (Cd) and approach velocity coefficient (C-nu) on different parameters of the model was investigated. Multiple regression equations based on three dimensionless ratios R-2, R-3 and R-4 for C-d and three dimensionless ratios R-1, R-2, and R-4 for C-nu were developed. Two derived prediction models can be used for the prediction of discharge over rectangular compound broad-crested weirs for free flow regime. The predictive capabilities of these models were evaluated using the experimental data obtained. By using the general equations of Cd and C, one can estimate the flow discharge in rectangular compound broad-crested weirs when the head at the upstream head measurement section, h1, is given with an absolute mean error of less than 5%.
FLOW MEASUREMENT AND INSTRUMENTATION

Suggestions

Forced hydraulic jump on artificially roughened beds
Şimşek, Çağdaş; Tokyay, Nuray; Department of Civil Engineering (2006)
In the scope of the study, prismatic roughness elements with different longitudinal spacing and arrangements have been tested in a rectangular flume in order to reveal their effects on fundamental characteristics of a hydraulic jump. Two basic roughness types with altering arrangements have been tested. Roughness elements of the first type extends through the channel width against the flow with varying length and pitch ratios for different arrangements. The second type is of staggered essence and produced b...
Simulation of surface waves generated by a rapid rise of a block at the sea bottom
Şenol, Nalan; Aydın, İsmail; Department of Civil Engineering (2005)
A mathematical model is developed for investigating time dependent surface deformations of a hydrostatic water volume, when it is subjected to a sudden partial rise of the sea bottom. In the model, 2-dimensional, compressible, and viscous Navier-Stokes equations are solved by Marker and Cell (MAC) method. Variable mesh size in both horizontal and vertical directions with a staggered grid arrangement is used. Limited compressibility model is utilized for pressure. Various computational tests are done for the...
Estimation of lining thickness around circular shafts
Ozturk, H; Unal, E (2001-06-22)
In this paper, the broken zone developing, around a circular mine shafts and lining pressure is estimated by integrating the results of numerical analysis and the "rock-load height" equation derived from empirical analysis. During numerical modelling studies, the computer program FLAC(2D) was utilized. In order to estimate equivalent Mohr failure Envelope from the generalised Hoek Brown failure criterion, a new FISH function was written within FLAC(2D). Parametric studies were carried out by considering mRM...
Estimation of lining thickness around circular shafts
Öztürk, Hasan (2001-06-22)
In this paper, the broken zone developing, around a circular mine shafts and lining pressure is estimated by integrating the results of numerical analysis and the "cock-load height" equation derived from empirical analysis. During numerical modelling studies, the computer program FLAC2D was utilized. In order to estimate equivalent Mohr failure Envelope from the generalised Hoek Brown failure criterion, a new FISH function was written within FLAC2D . Parametric studies were carried out by considering mRMR ...
Generation of surface waves due to sudden movements at the sea bottom
Kırlangıç, Özgür Ulaş; Aydın, İsmail; Department of Civil Engineering (2004)
A mathematical model is developed for investigating time dependent surface deformations of a hydrostatic water volume, when it is subjected to a sudden partial collapse or rise of the sea bottom. The model solves two-dimensional Navier-Stokes Equations on a vertical plane numerically by using Marker and Cell Method (MAC) for viscous and compressible fluid including all the nonlinear effects in the solution. For demonstration, a vertical motion was given to a section in a hypothetical reservoir bed within a ...
Citation Formats
I. A. Al-Khatib and M. Göğüş, “Prediction models for discharge estimation in rectangular compound broad-crested weirs,” FLOW MEASUREMENT AND INSTRUMENTATION, pp. 1–8, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/32636.