Aluminum Induced Glass Texturing (AIT) on Soda-Lime, Borosilicate, Alkali-Free and Silica Glass For Thin Film Solar Cell Applications

Ünal, Mustafa
Günöven, Mete
Tankut, Aydın
Sökmen, İlkay
Turan, Raşit
Texturing of glass substrate is an alternative novel method for light trapping, which to enhance the absorbed light by way of increasing the diffused transmittance (haze) so that the amount of absorbed light will be increased instead of texturing transparent conductive oxide (TCO). In this study, aluminum induced texturing (AIT) technique is used to texture different type of glasses to see the effect of the chemical composition on surface morphology and optical properties. Improvement in haze values as well as total transmission were obtained in all cases subsequent to texturing. High haze values are obtained by additionally enhancement in total transmission. Surface morphological characterization showed that the composition of glass have direct effect on the textured profile. We speculate that the components of glass other than SiO2 is affecting the density of reaction starting point densities initiation cites on the glass-Al interface.


Aluminum induced texturing of sandy and prism glasses: Combination of micro/nano texture with macro texture
Ünal, Mustafa; Donerscark, Ergi; Ozkol, Engin; Turan, Raşit (2017-08-01)
Aluminum induced texturing (AIT) is one of the most promising texturing methods, which can be applied on glass substrates for solar cell applications. Combination of different dimensional structures exhibits the opportunity to achieve enhanced light trapping schemes. Here in this study, float glass and macro textured sandy and prism glasses went through Aluminum induced texturing (AIT) process in order to enhance light management. Surface morphologies were investigated by FE-SEM and optical measurements in ...
Near-unity haze by aluminum induced glass texturing: structural evolution of Al/glass interface and its impact on texturing
Ünal, Mustafa; Canlı, Sedat; Turan, Raşit (2017-09-01)
Aluminum induced texturing (AIT) is an effective method to enhance light trapping in thin film solar cells through texturing the surface of the glass substrate. The topography of the textured glass is closely related to the processes that occur at the Al/glass interface during thermal annealing, which is commonly carried out at temperatures above 500 degrees C. The annealing temperature significantly influences the redox reaction between Al and SiO2, and thus the resultant surface texture. In this study, th...
Effect of aluminum thickness and etching time of aluminum induced texturing process on soda lime glass substrates for thin solar cell applications
Ünal, Mustafa; Gunoven, Mete; Sokmen, Ilkay; Tankut, Aydin; Turan, Raşit (2015-04-29)
In this study, aluminum induced texturing (AIT) technique is used to increase light absorption in thin film by way of increasing the portion of the diffuse transmitted light (haze). For this purpose, various AIT process parameters such as starting aluminum thicknesses, annealing temperature and time, etching time, etchant's concentrations, and temperature of etching are known to affect the final texture. We have investigated the effect of aluminum thickness and etching time on AIT process while keeping the ...
Sol-Gel processing of organically modified ITO thin films and characterization of their optoelectronic and microstructural properties
Kesim, Mehmet Tümerkan; Durucan, Caner; Department of Metallurgical and Materials Engineering (2012)
Indium tin oxide (ITO) thin films were formed on glass substrates by sol-gel method. Coating sols were prepared using indium chloride tetrahydrate (InCl3•4H2O) and tin-chloride pentahydrate (SnCl4•5H2O) stabilized in organic solvents (acetylacetone and ethanol). First attempt was to synthesize ITO thin films using standard/unmodified coating sols. The effect of calcination treatment in air (300 – 600 °C) and number of coating layer(s) (1, 4, 7 or 10) on optoelectronic properties (electrical conductivity and...
Oxygen plasma modification of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film surfaces for tissue engineering purposes
Hasırcı, Vasıf Nejat; Tezcaner, Ayşen; Hasırcı, Nesrin (2003-02-22)
Plasma glow-discharge application is known as a technique to coat or modify the surfaces of various materials. In this study, the influence of oxygen rf-plasma treatment on surface and bulk properties of a biological polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), were studied by determining water content and water contact angle, and by using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The plasma-treated films absorbed more water than the untreated film, and the a...
Citation Formats
M. Ünal, M. Günöven, A. Tankut, İ. Sökmen, and R. Turan, “Aluminum Induced Glass Texturing (AIT) on Soda-Lime, Borosilicate, Alkali-Free and Silica Glass For Thin Film Solar Cell Applications,” 2015, Accessed: 00, 2020. [Online]. Available: