Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer
Date
2016-06-15
Author
Aydemir, Akin
Terzioglu, Yunus
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
258
views
0
downloads
Cite This
This paper presents a new fabrication approach and design for a three axis capacitive MEMS accelerometer that is capable of measuring externally applied accelerations in three orthogonal axes. Individual lateral and vertical axis accelerometers are fabricated in the same die on an SOI wafer which is anodically bonded to a glass substrate. Handle layer of the SOI wafer is used as the top electrode for the vertical axis accelerometer. This accelerometer has a 2 mm(2) perforated electrode area anchored to the glass substrate by four beams. The lateral axis accelerometers on the other hand, have comb finger structures with a 2.7 x 4.2 mm device size and anchored to the glass substrate by six folded beams. Rest capacitance of the vertical axis accelerometer is designed to be 8.8 pF, and it is 10.2 pF for the lateral axis accelerometers. The system level performance results are obtained using analog readout circuitry integrated to each axis separately. The x- and y-axis accelerometers show a noise floor and bias instability equal or better than 13.9 mu g/root Hz and 17 mu g, respectively, while the z-axis accelerometer shows 17.8 mu g/root Hz noise floor and 36 mu g bias instability values.
Subject Keywords
Three-axis accelerometer
,
Out of plane accelerometer
,
Capacitive MEMS accelerometer
,
SOI
URI
https://hdl.handle.net/11511/33102
Journal
SENSORS AND ACTUATORS A-PHYSICAL
DOI
https://doi.org/10.1016/j.sna.2016.04.007
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Process Development for the Fabrication of a Three Axes Capacitive MEMS Accelerometer
Aydemir, Akin; Akın, Tayfun (2015-09-09)
This paper presents a new approach for the fabrication of a three-axis capacitive MEMS accelerometer that is capable of differentially sensing the acceleration in all three orthogonal axes. For the first time in literature, differential sensing for the out of plane direction is achieved by defining a movable sensing electrode on the structural layer of the SOI wafer that is sandwiched between two stationary electrodes defined on the glass substrate and the handle layer of the SOI wafer enabling the differen...
Fabrication of a Three-Axis Capacitive MEMS Accelerometer on a Single Substrate
Aydemir, Akin; Akın, Tayfun (2015-11-04)
This paper presents a new fabrication approach and a design for the fabrication of a three-axis capacitive MEMS accelerometer where differential sensing is enabled for all sense directions. In this approach, individual lateral and vertical axis accelerometers are fabricated in the same die on an SOI wafer which is eutectically bonded to a glass substrate. Differential sensing for the vertical axis accelerometer is realized by defining the proof mass of the accelerometer on the structural layer of the SOI wa...
A single mass two-axis capacitive MEMS accelerometer with force rebalance
Köse, Talha; Terzioʇlu, Yunus; Azgın, Kıvanç; Akın, Tayfun (2015-03-26)
This paper presents a single mass 2-axis MEMS capacitive accelerometer with a unique force rebalance method achieved with the readout circuit developed for the simultaneous 2-axis acceleration sensing. Using a single mass structure with extra fingers for reading multiple axes allows better sensor performances when compared to multi-axis accelerometers with individual proof masses occupying the same die area. Test results show 274 mV/g scale factor for x-axis, and 280 mV/g scale factor for y-axis, while the ...
Precision readout circuits for capacitive microaccelerometers
Yazdi, N; Külah, Haluk; Najafi, K (2004-01-01)
This paper presents a review of capacitive readout front-end circuits for high-precision accelerometers. The primary design parameters and the trade-offs affecting the resolution are presented. The discussions apply to all capacitive microsensor interfaces. Also a high-sensitivity capacitive accelerometer interface circuit for hybrid-integration with a surface/bulk micromachined micro-g accelerometer is described [7, 10]. The first generation of the circuit resolves 75aF of capacitance on similar to 120pF p...
Comparison of Two Alternative Fabrication Processes for a Three-Axis Capacitive MEMS Accelerometer
Tez, S.; Akın, Tayfun (Elsevier BV; 2012-09-12)
This paper presents a three-axis capacitive MEMS accelerometer implemented by fabricating lateral and vertical accelerometers in a same die with two alternative processes: a double glass modified dissolved wafer (DGM-DWP) and a double glass modified silicon-on-glass (DGM-SOG) processes. The accelerometers are implemented with a 35 mu m structural layer, and the three-axis accelerometer die measures 12mmx7mmx1mm in each process. Each process includes a second glass wafer which, not only allows implementing a...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Aydemir, Y. Terzioglu, and T. Akın, “A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer,”
SENSORS AND ACTUATORS A-PHYSICAL
, pp. 324–333, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/33102.