Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Fabrication of a Three-Axis Capacitive MEMS Accelerometer on a Single Substrate
Date
2015-11-04
Author
Aydemir, Akin
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
279
views
0
downloads
Cite This
This paper presents a new fabrication approach and a design for the fabrication of a three-axis capacitive MEMS accelerometer where differential sensing is enabled for all sense directions. In this approach, individual lateral and vertical axis accelerometers are fabricated in the same die on an SOI wafer which is eutectically bonded to a glass substrate. Differential sensing for the vertical axis accelerometer is realized by defining the proof mass of the accelerometer on the structural layer of the SOI wafer that is sandwiched between two stationary electrodes defined on the glass substrate and the handle layer of the SOI wafer.
Subject Keywords
Three axis
,
Vertical axis
,
Out of plane
,
MEMS inertial sensors
,
SOI
,
Accelerometer
URI
https://hdl.handle.net/11511/54542
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A new design and a fabrication approach to realize a high performance three axes capacitive MEMS accelerometer
Aydemir, Akin; Terzioglu, Yunus; Akın, Tayfun (2016-06-15)
This paper presents a new fabrication approach and design for a three axis capacitive MEMS accelerometer that is capable of measuring externally applied accelerations in three orthogonal axes. Individual lateral and vertical axis accelerometers are fabricated in the same die on an SOI wafer which is anodically bonded to a glass substrate. Handle layer of the SOI wafer is used as the top electrode for the vertical axis accelerometer. This accelerometer has a 2 mm(2) perforated electrode area anchored to the ...
Process Development for the Fabrication of a Three Axes Capacitive MEMS Accelerometer
Aydemir, Akin; Akın, Tayfun (2015-09-09)
This paper presents a new approach for the fabrication of a three-axis capacitive MEMS accelerometer that is capable of differentially sensing the acceleration in all three orthogonal axes. For the first time in literature, differential sensing for the out of plane direction is achieved by defining a movable sensing electrode on the structural layer of the SOI wafer that is sandwiched between two stationary electrodes defined on the glass substrate and the handle layer of the SOI wafer enabling the differen...
Fabrication of A Sandwich Type Three Axis Capacitive MEMS Accelerometer
Tez, Serdar; Akın, Tayfun (2013-11-06)
This paper presents a three axis capacitive MEMS accelerometer including individual lateral and vertical accelerometers in a same die. The three axis capacitive MEMS accelerometer is fabricated by utilizing a glass-silicon-glass multi-stack formed by a fabrication process depending on the double glass modified silicon on glass process (DGM-SOG), where the structural layer is selected to be 35 mu m thick silicon. The fabrication process uses the Au-Si eutectic bonding in the last step of the formation of th...
Precision readout circuits for capacitive microaccelerometers
Yazdi, N; Külah, Haluk; Najafi, K (2004-01-01)
This paper presents a review of capacitive readout front-end circuits for high-precision accelerometers. The primary design parameters and the trade-offs affecting the resolution are presented. The discussions apply to all capacitive microsensor interfaces. Also a high-sensitivity capacitive accelerometer interface circuit for hybrid-integration with a surface/bulk micromachined micro-g accelerometer is described [7, 10]. The first generation of the circuit resolves 75aF of capacitance on similar to 120pF p...
Magnetically levitated accelerometer design
Ceylan, İlke; Azgın, Kıvanç; Department of Mechanical Engineering (2019)
This thesis proposes the utilization of magnetic levitation for designing an acceleration sensor, taking the advantage of up-to-date contactless displacement sensing technology. The accelerometer is expected to have long-term robustness by isolating the proof mass from the rest of the accelerometer body, virtually eliminating mechanical friction and wear. Furthermore, levitated sensors have a great potential to achieve high precision. In this context, this study presents designing a levitated accelerometer,...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Aydemir and T. Akın, “Fabrication of a Three-Axis Capacitive MEMS Accelerometer on a Single Substrate,” 2015, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/54542.