Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics
Date
2007-08-01
Author
ŞAHİNKAYA, Erkan
Dilek, Filiz Bengü
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
211
views
0
downloads
Cite This
Two instantaneously fed sequencing batch reactors (SBRs), one receiving 4-chlorophenol (4-CP) (SBR4) only and one receiving mixture of 4-CP and 2,4-dichlorophenol (2,4-DCP) (SBRM), were operated with increasing chlorophenols concentrations in the feed. Complete degradation of chlorophenols and high-Chemical oxygen demand (COD) removal efficiencies were observed throughout the reactors operation. Only a fraction of biomass (competent biomass) was thought to be responsible for the degradation of chlorophenols due to required unique metabolic pathways. Haldane model developed based on competent biomass concentration fitted reasonably well to the experimental data at different feed chlorophenols concentrations. The presence of 2,4-DCP competitively inhibited 4-CP degradation and its degradation began only after complete removal of 2,4-DCP. Based on the experimental results, the 4-CP degrader's fraction in SBRM was estimated to be higher than that in SBR4 since 2,4-DCP degraders were also capable of degrading 4-CP due to similarity in the degradation pathways of both compounds.
Subject Keywords
Environmental Engineering
,
Bioengineering
,
Pollution
,
Microbiology
,
Environmental Chemistry
URI
https://hdl.handle.net/11511/34560
Journal
BIODEGRADATION
DOI
https://doi.org/10.1007/s10532-006-9077-3
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Effect of biogenic substrate concentration on 4-chlorophenol degradation kinetics in sequencing batch reactors with instantaneous feed
ŞAHİNKAYA, Erkan; Dilek, Filiz Bengü (Elsevier BV, 2006-09-01)
Two sequencing batch reactors (SBRs) instantaneously fed with 200mg/l 4-chlorophenol (4-CP) were operated at different feed peptone concentrations to investigate the effect of biogenic substrate (peptone) concentrations on reactor performance, yield coefficient (Y) and 4-CP degradation kinetics. One of the reactors was operated at 10 days of sludge retention time (SRT) and the other was operated at 20 days of SRT. High chemical oxygen demand (COD) removal efficiencies (90-95%) and complete 4-CP removals (de...
Modeling anaerobic dechlorination of polychlorinated biphenyls
Demirtepe, Hale; İmamoğlu, İpek; Department of Environmental Engineering (2012)
This study aims to investigate the fate of polychlorinated biphenyls (PCBs) in sediments via using an anaerobic dechlorination model (ADM). PCBs are ubiquitous environmental pollutants, accumulated mostly in aquatic sediments. Significant attention was placed on the anaerobic dechlorination of PCBs since this process leads to the conversion of highly-chlorinated biphenyls to lower chlorinated ones, resulting in less toxic and more biodegradable congeners. An ADM was developed previously for the identificati...
Partial Nitrification Achieved by Pulse Sulfide Doses in a Sequential Batch Reactor
Bayramoğlu, Tuba Hande; VLAEMİNCK, Siegfried; Verstraete, Willy (American Chemical Society (ACS), 2008-12-01)
A nitrifying sequential batch reactor operated under 2-day cyclic aerobic and anoxic conditions was pulse dosed with incremental sulfide concentrations during anoxic conditions. The nitrite-oxidizing bacteria were found to be more sensitive to sulfide than the ammonia oxidizers. A maximum of nitrite-N to (nitrite-N + nitrate-N) accumulation ratio of 0.75 was obtained at an initial pulse sulfide-S concentration of 45 mg/L under pH control at 7.5 +/- 0.2 and fully mixing conditions. Total ammonium nitrogen wa...
Modelling aerobic 4-chlorophenol and 2,4-dichlorophenol biodegradation-effect of biogenic substrate concentration
Şahinkaya, Erkan; Dilek, Filiz Bengü; Department of Environmental Engineering (2006)
Aerobic biodegradation kinetics of 4-Chlorophenol (4-CP) and 2,4-Dichlorophenol (2,4-DCP) by acclimated mixed cultures were examined separately and in mixture using batch and sequencing batch reactors (SBRs). Biodegradation abilities of acclimated mixed cultures were also compared with those of isolated pure species. Complete degradation of chlorophenols and high COD removal efficiencies were observed throughout the SBRs operation. During the degradation of 4-CP, 5-chloro-2-hydroxymuconic semialdehyde, (the...
Biodegradation of 4-CP and 2,4-DCP mixture in a rotating biological contactor (RBC)
şahinkaya, Erkan; Dilek, Filiz Bengü (Elsevier BV, 2006-09-01)
In this study, the performance of a two stage rotating biological contactor (RBC) was evaluated for the treatment of synthetic wastewater containing peptone, 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) at 5 rpm. Also, the effect of biogenic substrate (peptone) concentration on the reactor performance was investigated. High chlorophenols (> 98%) and COD (> 94%) removals were achieved throughout the reactor operation in the first stage and the second stage behaved as a polishing step. The observed ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. ŞAHİNKAYA and F. B. Dilek, “Modeling chlorophenols degradation in sequencing batch reactors with instantaneous feed-effect of 2,4-DCP presence on 4-CP degradation kinetics,”
BIODEGRADATION
, pp. 427–437, 2007, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34560.