Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ideal Location of Intermediate Ring Stiffeners on Discretely Supported Cylindrical Shells
Date
2014-04-01
Author
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
276
views
0
downloads
Cite This
Silos in the form of a cylindrical metal shell are commonly elevated to provide access to the space beneath, permitting the contained materials to be directly discharged. A few discrete column supports at evenly spaced intervals are commonly used. However, the structural design of discretely supported cylindrical shells presents a variety of challenges. The presence of discrete supports results in circumferential nonuniformity in the axial compressive stress as well as a progressive vertical decay above the support. Several approaches can be adopted in design depending on the severity of the nonuniformity of the stresses. Relevant research to date has focused mostly on the behavior of cylinders supported on brackets, local forces at the base, or stiff ring beams. The use of intermediate ring stiffeners to provide circumferential uniformity in the axial membrane stresses has long been recognized, but few studies have given a clear view of the practical requirements for such rings. In this paper, a combination of base and intermediate ring stiffeners is explored to develop a practical and cost-effective solution that leads to more uniformity in the axial membrane stresses above the intermediate ring stiffener. For the purposes of obtaining a simple analytical solution, the cylindrical shell is subjected to the fundamental harmonic of the column support and analyzed using membrane theory. It is shown that an ideal location exists for an intermediate ring stiffener such that the axial membrane stress above this ring is circumferentially completely uniform. The ideal location of this ring is determined analytically and is expressed in terms of the basic geometric variables. This ideal ring location is then independently verified using many linear finite-element analyses. A further study explores the effect of placing the intermediate ring stiffener below the ideal location. The results are presented in a manner that makes them suitable for direct adoption into traditional design specifications. (C) 2013 American Society of Civil Engineers.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
URI
https://hdl.handle.net/11511/34663
Journal
JOURNAL OF ENGINEERING MECHANICS
DOI
https://doi.org/10.1061/(asce)em.1943-7889.0000688
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Ring Beam Stiffness Criterion for Column-Supported Metal Silos
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2011-12-01)
Cylindrical metal silos are commonly elevated to provide access space beneath to directly discharge the contained materials into transportation systems. Evenly spaced column supports are commonly utilized. In larger silos, the discrete forces from supports are more evenly transferred and distributed into the cylindrical shell wall by using a ring beam. A fundamental assumption in the design of the silo shell is that the meridional compressive stresses are relatively uniformly distributed around the circumfe...
Application of ring beam stiffness criterion for discretely supported shells under global shear and bending
Topkaya, Cem (SAGE Publications, 2018-12-01)
Silos in the form of a cylindrical metal shell are commonly elevated to provide access to the space beneath. In general, a few discrete column supports at evenly spaced intervals are commonly utilized. The presence of discrete supports results in circumferential non-uniformity in the axial compressive stress above the support. Depending on the size of the structure, several different support arrangements may be chosen. A stiff ring beam is utilized in larger silos to transfer and evenly distribute the discr...
Analysis of silo supporting ring beams and intermediate ring stiffeners
Zeybek, Özer; Topkaya, Cem; Department of Civil Engineering (2018)
Silos in the form of a cylindrical metal shell are commonly supported by a few discrete columns to permit the contained materials to be directly discharged. The discrete supports produce a circumferential non-uniformity in the axial membrane stresses in the silo shell. One way of reducing the non-uniformity of these stresses is to use a very stiff ring beam which partially or fully redistributes the stresses from the local support into uniform stresses in the shell. Another alternative is to use a combinati...
Finite Element Analysis of Laminated Beams Under Transverse Loading
WASTİ PAMUKSUZ, SYEDA NAZLI; Utku, Mehmet (Wiley, 2000-11-01)
Laminated beams fabricated from strips with intermediate adhesive bonding layers are frequently used. The evaluation of the shear and normal stresses in the adhesive layer along the length of the beam is important and both analytical as well as experimental investigations for these stresses have been previously documented. In the present paper, an attempt has been made to compare the analytical shear stress values in the adhesive layer obtained in previous analytical work with those obtained by modelling th...
Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions
ÇELİK, YAHYA HIŞMAN; Demir, Mehmet Emin; KILIÇKAP, EROL; Kalkanlı, Ali (Springer Science and Business Media LLC, 2020-01-01)
Metal matrix composites (MMCs) with their splendid mechanical properties have been specifically designed for use in fields such as aerospace and aviation. The presence of hard ceramic particles in MMC increases the hardness of the matrix product and decreases its coefficient of friction. Therefore, the wear resistance is improved. Moreover, the mechanical properties of these composite materials can be improved by applying heat treatments. In this study, AlSi7Mg2 MMCs with 15 wt% SiC reinforcement were produ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Topkaya, “Ideal Location of Intermediate Ring Stiffeners on Discretely Supported Cylindrical Shells,”
JOURNAL OF ENGINEERING MECHANICS
, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34663.