Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ring Beam Stiffness Criterion for Column-Supported Metal Silos
Date
2011-12-01
Author
Topkaya, Cem
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
215
views
0
downloads
Cite This
Cylindrical metal silos are commonly elevated to provide access space beneath to directly discharge the contained materials into transportation systems. Evenly spaced column supports are commonly utilized. In larger silos, the discrete forces from supports are more evenly transferred and distributed into the cylindrical shell wall by using a ring beam. A fundamental assumption in the design of the silo shell is that the meridional compressive stresses are relatively uniformly distributed around the circumference. This assumption can easily be violated if the ring beam is flexible, so it is necessary to determine the ring stiffness needed to achieve a particular degree of uniformity of support. Current methods of assessing this stiffness rely on onerous finite-element analysis, which only provides information for the specific design being checked. In this paper, a criterion is developed to identify the required ring beam stiffness to achieve a particular degree of uniformity in the shell stresses. It is based on the ratio of the ring beam stiffness to the cylindrical shell stiffness in axial deformation in the fundamental harmonic mode of the column support, assuming that the ring is concentrically loaded and supported at equal intervals around the circumference. Vlasov's curved beam is used to derive a closed-form solution for the ring beam stiffness and semimembrane theory for the cylindrical shell. The resulting stiffness ratio is verified using an extensive numerical study. It is shown that the method provides an effective means of determining the required stiffness of a supporting ring beam. DOI:10.1061/(ASCE)EM.1943-7889.0000291. (C) 2011 American Society of Civil Engineers.
Subject Keywords
Mechanical Engineering
,
Mechanics of Materials
URI
https://hdl.handle.net/11511/46279
Journal
JOURNAL OF ENGINEERING MECHANICS-ASCE
DOI
https://doi.org/10.1061/(asce)em.1943-7889.0000291
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Ideal Location of Intermediate Ring Stiffeners on Discretely Supported Cylindrical Shells
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2014-04-01)
Silos in the form of a cylindrical metal shell are commonly elevated to provide access to the space beneath, permitting the contained materials to be directly discharged. A few discrete column supports at evenly spaced intervals are commonly used. However, the structural design of discretely supported cylindrical shells presents a variety of challenges. The presence of discrete supports results in circumferential nonuniformity in the axial compressive stress as well as a progressive vertical decay above the...
Material characterization at high strain rates using modified taylor impact test and velocity interferometry
Kesemen, Latif; Kayran, Altan; Department of Aerospace Engineering (2016)
Metallic materials in aerospace structures are exposed to impact type loads depending on their usage area. High strain rate material characterization of metallic materials is very crucial to properly prepare finite element models to be used in impact loading situations. Johnson-Cook material model is a suitable material model to represent the behaviour of metallic materials at high strain rates. In the present thesis study, parameters of the Johnson-Cook material model for Al 7075-T651 are determined utiliz...
Post-buckling behaviour of metallic skin-stringer assemblies and buckling of composite flat panels
Aydın, Enes; Kayran, Altan; Department of Aerospace Engineering (2018)
Stiffened thin panels are very common and important structural elements in aerospace structures because of the weight and stiffness advantages they provide. The stiffener section is important to determine the support condition that the stiffener provides on the unloaded edges of the panel. In the first phase of the thesis study, the effect of the boundary conditions on the buckling coefficients of stiffened metal flat panels is investigated utilizing finite element and empirical approaches. Empirical approa...
Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering
Dalgıç, Ali Deniz; Karataş, Ayten; Tezcaner, Ayşen; Keskin, Dilek (Elsevier BV, 2019-07-01)
Tissue engineering can benefit from wide variety of materials produced by microorganisms. Natural origin materials often possess good biocompatibility, biodegradability with sustainable production by microorganisms. A phytoplankton, diatom, produces an amorphous silica shell that can be obtained by a cost efficient production process. Diatom shells (DS) are promising for bone tissue engineering since silicon enhances bone regeneration. Biocompatible and biodegradable biopolymers with microorganism origin ca...
Finite Element Analysis of Laminated Beams Under Transverse Loading
WASTİ PAMUKSUZ, SYEDA NAZLI; Utku, Mehmet (Wiley, 2000-11-01)
Laminated beams fabricated from strips with intermediate adhesive bonding layers are frequently used. The evaluation of the shear and normal stresses in the adhesive layer along the length of the beam is important and both analytical as well as experimental investigations for these stresses have been previously documented. In the present paper, an attempt has been made to compare the analytical shear stress values in the adhesive layer obtained in previous analytical work with those obtained by modelling th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Topkaya, “Ring Beam Stiffness Criterion for Column-Supported Metal Silos,”
JOURNAL OF ENGINEERING MECHANICS-ASCE
, pp. 846–853, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46279.