Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of a novel biosensor based on a conducting polymer
Date
2014-01-15
Author
SÖYLEMEZ, SANİYE
Kanik, Fulya Ekiz
Ileri, Merve
Hacioglu, Serife O.
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
207
views
0
downloads
Cite This
A new type of amperometric cholesterol biosensor was fabricated to improve the biosensor characteristics such as sensitivity and reliability. For this purpose, a novel immobilization matrix 2-(4-fluorophenyl)-4,7-di(thiophene-2-yl)-1H-benzo[d]imidazole (BIPF) was electrochemically deposited on a graphite electrode and used as a matrix for the immobilization of cholesterol oxidase (ChOx). Due to strong pi-pi stacking of aromatic groups in the structures of polymer backbone and enzyme molecule, one can easily achieve a sensitive and reliable biosensor without using any membrane or covalent bond formation between the enzyme molecules and polymer surface. Moreover, through pendant fluorine group of the polymer, H-bond formation between with enzyme molecules and polymer was generated. Cholesterol was used as the substrate and amperometric response was measured in correlation with cholesterol amount, at -0.7 V vs. Ag/AgCl in phosphate buffer (pH 7.0). Consequently, optimum conditions for this constructed biosensor were determined. K(M)app, I-max, LOD and sensitivity values were investigated and calculated as 4.0 nM, 2.27 mu A, 0.404 mu M and 1.47 mA/mM cm(2), respectively. A novel and accurate cholesterol biosensor was developed for the determination of total cholesterol in food samples.
Subject Keywords
Conducting polymer
,
Cholesterol biosensor
,
Amperometric biosensor
,
Cholesterol oxidase
URI
https://hdl.handle.net/11511/34791
Journal
TALANTA
DOI
https://doi.org/10.1016/j.talanta.2013.10.007
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Electrochemical and optical properties of a conducting polymer and its use in a novel biosensor for the detection of cholesterol
SÖYLEMEZ, SANİYE; UDUM, YASEMİN; Kesik, Melis; HIZLIATEŞ, CEVHER GÜNDOĞDU; ERGÜN, Mustafa Yavuz; Toppare, Levent Kamil (2015-06-01)
A simple and robust cholesterol biosensor was designed by immobilizing cholesterol oxidase (ChOx) onto a conducting polymer modified graphite electrode. For this purpose, monomer, (Z)-4-(4-(9H-carbazol-9-yl) benzylidene) 2 (4 nitrophenyl) oxazol-5(4H)-one (CBNP), was synthesized and electrochemically polymerized on an electrode to achieve an effective immobilization platform for enzyme immobilization. After electropolymerization of the monomer (CBNP), electrochemical and spectroelectrochemical properties we...
An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk
Turan, Janset; Kesik, Melis; SÖYLEMEZ, SANİYE; Goker, Seza; Coskun, Sahin; Ünalan, Hüsnü Emrah; Toppare, Levent Kamil (2016-06-02)
In this study, a novel approach for the fabrication of a biosensor utilizing a conducting polymer and silver nanowires is reported. To obtain immobilization platform for butyrylcholinesterase (BChE), a graphite electrode was modified with the poly(5,6-bis(octyloxy)-4,7-di(thieno[3][3,2-b]thiophen-2yl)benzo[c][1,2,5]oxoadiazole) (PTTBO) which has a hydrophobic alkyl chain as the pendant group providing hydrophobic nature to the matrix. Since biomolecules contain both hydrophobic and hydrophilic parts in thei...
A conducting polymer and a calixarene derivative A novel surface design for glucose detection
Gökoğlan, Ceren; Söylemez, Saniye; Kesik, Melis; Ünay, Hande; Sayın, Serkan; Çırpan, Ali; Yıldız, Hüseyin Bekir; Toppare, Levent Kamil (null; 2016-07-17)
In this study, a novel amperometric glucose biosensor based on a conducting polymer and a calixarene was developed. Conducting polymer of (2‐(2‐oc‐tyldodecyl)‐4,7‐di(selenoph‐2‐yl)‐2H‐benzo[d][1,2,3]triazole)) (SBTz) was used as the immobilization matrix for biomolecule deposition to achieve an effective surface design to detect glucose. After successful deposition of SBTz on graphite electrode, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture were used for improving biosensor character...
Development of Silicalite/Glucose Oxidase-Based Biosensor and Its Application for Glucose Determination in Juices and Nectars
Dudchenko, Oleksandr Ye; Pyeshkova, Viktoriya M.; Soldatkin, Oleksandr O.; Akata Kurç, Burcu; Kasap, Berna O.; Soldatkin, Alexey P.; Dzyadevych, Sergei V. (2016-02-03)
The application of silicalite for improvement of enzyme adsorption on new stainless steel electrodes is reported. Glucose oxidase (GOx) was immobilized by two methods: cross-linking by glutaraldehyde (GOx-GA) and cross-linking by glutaraldehyde along with GOx adsorption on silicalite-modified electrode (SME) (GOx-SME-GA). The GOx-SME-GA biosensors were characterized by a four-to fivefold higher sensitivity than GOx-GA biosensor. It was concluded that silicalite together with GA sufficiently enhances enzyme ...
A novel architecture based on a conducting polymer and calixarene derivative: its synthesis and biosensor construction
GOKOGLAN, Tugba Ceren; SOYLEMEZ, Saniye; KESIK, Melis; UNAY, Hande; Sayin, Serkan; Yildiz, Huseyin Bekir; Çırpan, Ali; Toppare, Levent Kamil (2015-01-01)
In this study, a novel amperometric glucose biosensor based on a selenium comprising conducting polymer and calixarene was developed. Firstly, poly(2-(2-octyldodecyl)-4,7-di(selenoph-2-yl)-2H-benzo[d][1,2,3]-triazole), poly((SBTz)) was electrodeposited onto a graphite electrode by an electropolymerization technique. Then, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture was used for the improvement of biosensor characteristics. GOx, as a model enzyme was immobilized on the modified electr...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. SÖYLEMEZ, F. E. Kanik, M. Ileri, S. O. Hacioglu, and L. K. Toppare, “Development of a novel biosensor based on a conducting polymer,”
TALANTA
, pp. 84–89, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/34791.