Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole

Cholesterol oxidase has been immobilized in conducting copolymers of thiophene-3-yl acetic acid cholesteryl ester with pyrrole (CM/PPy) and polypyrrole (PPy) via electropolymerization. p-Toluene sulphonic acid was used as the supporting electrolyte. Kinetic parameters (V-max and K-m) and operational stability of enzyme electrodes were investigated. Surface morphology of the films was examined by scanning electron microscope.


Immobilization of invertase and glucose oxidase in conducting copolymers of thiophene functionalized poly(vinyl alcohol) with pyrrole
Sahmetlioglu, E; Yuruk, H; Toppare, Levent Kamil; Cianga, I; Yagci, Y (Elsevier BV, 2006-03-01)
In this study, immobilizations of invertase and glucose oxidase were achieved in conducting thiophene functionalized copolymers of vinyl alcohol with thiophene side groups and pyrrole (PVATh/PPy) via electrochemical polymerization. The kinetic parameters, V-max (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on the enzyme activity and film morphologies was ex...
Synthesis, characterization and electrochromic properties of conducting copolymers of 3-[(3-thienylcarbonyl)oxy]-2,2-bis{[(3-thienylcarbonyl)oxy]}propyl 3-thiophene carboxylate with thiophene and pyrrole
Bulut, U; Yilmaz, F; Yagci, Y; Toppare, Levent Kamil (Elsevier BV, 2004-01-01)
3-[(3-Thienylcarbonyl)oxy]-2,2-bis{[(3-thienylcarbonyl)oxy]}propyl 3-thiophene carboxylate (TOTPT) was synthesized by the reaction of 3-thionylcarbonyl chloride with pentaerythritol, it was electrochemically polymerized with either thiophene or pyrrole by using tetrabutylammonium tetrafluoroborate (TBAFB) as the supporting electrolyte in acetonitrile (AN). Characterization of the resulting copolymers was carried out by FTIR spectroscopy, cyclic voltammetry, thermal gravimetry analysis (TGA), differential sc...
Synthesis and characterization of thiophen-3-yl acetic acid 4-pyrrol-1-yl phenyl ester and its conducting polymers
BINGÖL, Bahar; GÜNER, Yusuf; Çırpan, Ali; Toppare, Levent Kamil (Informa UK Limited, 2005-08-01)
Thiophen-3-yl acetic acid 4-pyrrol-1-yl phenyl ester (TAPE) monomer was synthesized via reaction of thiophen-3-yl acetyl chloride with 4-pyrrol-1-yl phenol. Homopolymers were achieved by using electrochemical and chemical polymerization techniques. Copolymers of TAPE with bithiophene or pyrrole were synthesized by potentiostatic electrochemical polymerization in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB) solvent-electrolyte couple. The chemical structures were confirmed by both Nuclear Magnet...
Electrochemical Synthesis of a Water-Soluble and Self-Doped Polythiophene Derivative
Turac, Ersen; Varol, Ramazan; Ak, Metin; Sahmetlioglu, Ertugrul; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
A new monomer, 4-(thiophen-3-yl methyleneamino)benzene sulfonate) (ThSA), was synthesized and characterized. Electrochemical polymerization of ThSA yields a water-soluble and self-doped polymer (PThSA). This polymer was characterized by FT-IR, NMR, DSC, XRD and conductivity measurements. (C) Koninklijke Brill NV, Leiden, 2008
Immobilization of Invertase in Copolymer of 2,5-Di(thiophen-2-yl)-1-p-Tolyl-1H-Pyrrole with Pyrrole
Celebi, Selin; Ibibikcan, Esin; Kayahan, Senem; Yigitsoy, Basak; Toppare, Levent Kamil (Informa UK Limited, 2009-01-01)
Immobilization of invertase in conducting copolymer matrix of 2,5-di(thiophen-2-yl)-1-p-tolyl-1H-pyrrole with pyrrole (poly(DDTP-co-Py)) was achieved via electrochemical polymerization. Kinetic parameters, Michaelis-Menten constant, Km and the maximum reaction rate, Vmax were investigated. Operational stability and temperature optimization of the enzyme electrodes were also examined. Immobilized invertase reveals maximum activity at 50 degrees C and; pH 8 and pH 4 for two copolymer matrices. Although the sa...
Citation Formats
A. Çırpan, L. K. Toppare, and Y. YAGCI, “Immobilization of cholesterol oxidase in a conducting copolymer of thiophene-3-yl acetic acid cholesteryl ester with pyrrole,” DESIGNED MONOMERS AND POLYMERS, pp. 237–243, 2003, Accessed: 00, 2020. [Online]. Available: