Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Zinc oxide nanowire networks for macroelectronic devices
Date
2009-04-20
Author
Ünalan, Hüsnü Emrah
Hiralal, Pritesh
Dalal, Sharvari
Chu, Daping
Eda, Goki
Teo, K. B. K.
Chhowalla, Manish
Milne, William I.
Amaratunga, Gehan A. J.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
217
views
0
downloads
Cite This
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.
Subject Keywords
Physics and Astronomy (miscellaneous)
URI
https://hdl.handle.net/11511/35463
Journal
APPLIED PHYSICS LETTERS
DOI
https://doi.org/10.1063/1.3120561
Collections
Department of Metallurgical and Materials Engineering, Article
Suggestions
OpenMETU
Core
Thin-film transistors based on poly, (3,3 '''-dialkyl-quarterthiophene) and zinc oxide nanowires with improved ambient stability
Vieira, Sara M. C.; Hsieh, Gen-Wen; Ünalan, Hüsnü Emrah; Dag, Sefa; Amaratunga, Gehan A. J.; Milne, William I. (AIP Publishing, 2011-03-07)
The ambient stability of thin-film transistors (TFTs) based on zinc oxide (ZnO) nanowires embedded in poly (3,3'''-dialkyl-quarterthiophene) was monitored through time dependence of electrical characteristics over a period of 16 months. The hybrid-based TFT showed an initial hole mobility in the linear regime of 4.2 x 10(-4) cm(2)/V s. After 16 months storage in ambient conditions (exposed to air, moisture, and light) the mobility decreased to 2.3 x 10(-5) cm(2)/V s. Comparatively the organic-based TFT lost...
Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells
Pasquier, AD; Ünalan, Hüsnü Emrah; Kanwal, A; Miller, S; Chhowalla, M (AIP Publishing, 2005-11-14)
We describe the use of single-wall carbon nanotube (SWNT) thin films as transparent and conducting electrodes for hole collection in poly(hexyl)thiophene-[6-6]phenyl-C-61-butyric acid methyl ester (P3HT-PCBM) organic photovoltaics. We report a power conversion efficiency of 1%, with a fill factor of 0.3 and a short-circuit current of 6.5 mA/cm(2) under 100 mW/cm(2) polychromatic white light illumination measured in air. These values are comparatively higher than reference cells of similar thickness made on ...
Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers
Ünalan, Hüsnü Emrah; Suzuki, Kenichi; Dalal, Sharvari; Hiralal, Pritesh; Matsumoto, Hidetoshi; Imaizumi, Shinji; Minagawa, Mie; Tanioka, Akihiko; Flewitt, Andrew J.; Milne, William I.; Amaratunga, Gehan A. J. (AIP Publishing, 2008-09-29)
Zinc oxide (ZnO) nanowires (NWs) grown on carbon fibers using a vapor transport and condensation approach are used as the cathode of a photoelectrochemical cell. The carbon fibers were obtained by electrospray deposition and take the form of a flexible carbon fabric. The ZnO NW on carbon fiber anode is combined with a "black dye" photoabsorber, an electrolyte, and a platinum (Pt) counterelectrode to complete the cell. The results show that ZnO NW and carbon fibers can be used for photoinduced charge separat...
Field emission from graphene based composite thin films
Eda, Goki; Ünalan, Hüsnü Emrah; Rupesinghe, Nalin; Amaratunga, Gehan A. J.; Chhowalla, Manish (AIP Publishing, 2008-12-08)
Field emission from graphene is challenging because the existing deposition methods lead to sheets that lay flat on the substrate surface, which limits the field enhancement. Here we describe a simple and general solution based method for the deposition of field emitting graphene/polymer composite thin films. The graphene sheets are oriented at some angles with respect to the substrate surface leading to field emission at low threshold fields (similar to 4 V mu m(-1)). Our method provides a route for the de...
Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy
Bostanci, Umut; Abak, M. Kurtulus; AKTAŞ, Özgür; DANA, Aykutlu (AIP Publishing, 2008-03-03)
We report a scanning probe technique that can be used to measure charging of localized states on conducting or partially insulating substrates at room temperature under ambient conditions. Electrostatic interactions in the presence of a charged particle between the tip and the sample is monitored by the second order flexural mode, while the fundamental mode is used for stabilizing the tip-sample separation. Cycling the bias voltage between two limits, it is possible to observe hysteresis of the second order...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. E. Ünalan et al., “Zinc oxide nanowire networks for macroelectronic devices,”
APPLIED PHYSICS LETTERS
, pp. 0–0, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35463.