Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A low-cost rate-grade nickel microgyroscope
Date
2006-11-08
Author
Alper, Said Emre
Silay, Kanber Mithat
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
This paper presents a low-cost microgyroscope with a resolution in the rate-grade at atmospheric pressure, which is fabricated using a CMOScompatible nickel electrofonning process. Angular rate resolution of the gyroscope is increased by matching the resonance frequencies of the drive and sense modes close to each other using symmetric suspensions and electrostatic frequency tuning; whereas, undesired mechanical coupling between the two modes during matched mode operation is reduced by the fully decoupled gyro flexures. Reduced mechanical coupling results in a stable zero-rate output bias, i.e., providing excellent bias stability. The fabricated gyroscope has 18 mu m-thick nickel structural layer with 2.5 mu m capacitive gaps providing an aspect ratio above 7, which results in sensor capacitances about 0.5 pF. The resonance frequencies of the fabricated gyroscope are measured to be 4.09 kHz for the drive-mode and 4.33 kHz for the sense-mode, which are then matched by a tuning voltage less than 12 V dc. The gyroscope is hybrid connected to a CMOS capacitive interface circuit, and the hybrid system operation is controlled by external electronics, constructing an angular rate sensor. The gyroscope is oscillated along the drive-mode to vibration amplitude above 10 mu m. The rate sensor demonstrates a noise-equivalent rate of 0.095 (degrees/s)/HZ(1/2) and short-term bias stability better than 0.1 degrees/s. The nominal scale factor of the sensor is 17.7 mV/(degrees/s) in a measurement range of 100 degrees/s, with a full-scale nonlinearity of only 0.12%. The measurement bandwidth of the gyroscope is currently set to 30 Hz, while it can be extended beyond 100 Hz depending on the application requirements. The quality factor of the sense-mode improves by an order of magnitude at vacuum, which yields an estimated noise-equivalent rate better than 0.05 (degrees/s)/HZ1/2 in a narrowed response bandwidth of 10 Hz. (c) 2006 Elsevier B.V. All fights reserved.
Subject Keywords
Instrumentation
,
Electrical and Electronic Engineering
,
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Condensed Matter Physics
,
Metals and Alloys
URI
https://hdl.handle.net/11511/35697
Journal
SENSORS AND ACTUATORS A-PHYSICAL
DOI
https://doi.org/10.1016/j.sna.2006.03.031
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Symmetrical and decoupled nickel microgyroscope on insulating substrate
Alper, Se; Akın, Tayfun (Elsevier BV, 2004-09-21)
This paper presents a symmetrical and decoupled surface micromachined gyroscope fabricated by electroforming thick nickel on a glass substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for improved sensitivity, while the decoupled drive and sense oscillation modes prevents unstable operation due to mechanical coupling, resulting in a low zero-rate output drift. The use of a glass substrate instead of a silicon substrate reduces noise due to the para...
A sol-gel derived AgCl photochromic coating on glass for SERS chemical sensor application
Volkan, Mürvet; Vo-Dinh, T (Elsevier BV, 2005-05-13)
A new optically translucent material has been prepared that acts as a substrate for surface-enhanced Raman spectroscopy. This material is a silica matrix, synthesized by the sol-gel method and containing in situ precipitated AgCl particles which serve as precursors for nanoparticles of elemental silver. Reduction of AgCl to silver nanoparticles is achieved by UV irradiation. The SERS-active medium was distributed on glass supports (cover glass slips, 0.5 turn thick), hence producing thin, sturdy, and optica...
A DNA-free colorimetric probe based on citrate-capped silver nanoparticles for sensitive and rapid detection of coralyne
Usta, Hatice Muge; Forough, Mehrdad; Persil Çetinkol, Özgül (Elsevier BV, 2019-11-01)
This paper presents a simple, sensitive and reliable strategy for the colorimetric determination of coralyne (COR) using citrate-capped silver nanoparticles (Cit-AgNPs). In the presence of NaC1, COR induces the aggregation of Cit-AgNPs, resulting in a change of color from shinny yellow to pink. Significant variables affecting the proposed method (salt concentration, interaction time, interaction temperature and pH) were evaluated and optimized to achieve the maximum sensing performance. Optimal conditions w...
A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (Elsevier BV, 2007-03-30)
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m,...
A second harmonic based resonance characterization method for MEMS electrostatic resonators
Aydin, EREN; GOKCE, Furkan; Kangul, MUSTAFA; ZORLU, Ozge; Külah, Haluk (Elsevier BV, 2018-05-01)
This paper presents a novel read-out approach both for eliminating parasitic feedthrough current and for enhancing the quality-factor (Q) of the resonating system at the same time. A new resonance characterization method based on sensing second harmonic component of the resonators was developed. Utilizing this method, the feedthrough current was eliminated and the signal-to-background ratio was increased from 0.9 dB to 35.5 dB. Furthermore, the Q of the resonating system was improved by 65% experimentally. ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. E. Alper, K. M. Silay, and T. Akın, “A low-cost rate-grade nickel microgyroscope,”
SENSORS AND ACTUATORS A-PHYSICAL
, pp. 171–181, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35697.