Turbo-rotary compound engine (TRCE) and novel thermodynamic cycle

2005-06-09
Akmandor, Ibrahim Sinan
Ercan, Taylan
Karaca, Mehmet
The present paper proposes a new turbo-rotary compound engine (TRCE) and an associated novel thermodynamic cycle. In this engine, shafts linking customary gas turbine engines components such as axial compressors and axial turbines are eliminated. Instead, two or multiple spools are lined up in series within the engine. In the front spool, partial admission rotary vane type turbines drive axial compressor stages. In the back spool, axial turbine stages drive partial admission rotary vane type compressors. Two air streams feed separately the customary turbo components and the rotary vane components, respectively. Accordingly, the primary high mass flow through the axial compressors and turbines is mainly responsible for the generation of net engine thrust and power, where as the secondary, low mass flow through the partial admission rotary components is mainly used to generate the internal energy required to power the axial compressor stages. The energy consumed internally by the engine is minimized because less input shaft power is needed for the rotary vane compressors and higher inlet temperatures and less cooling can be tolerated by the intermittent combustion rotary vane turbines. The result is a radical improvement in both efficiency and net power output. Aerothermodynamics and spool matching calculations comparing a T56-A14 core with a TRCE of similar size and compression ratio show that the new engine provides superior performance characteristics by increasing the net output work by 100% and decreasing the specific fuel consumption by 20%.

Suggestions

Overal, performance prediction of turbo rotary compound (turc) engine using simulation results of engine components
Karaca, Mehmet; Akmandor, İbrahim Sinan; Department of Aerospace Engineering (2005)
The thesis proposes an overall performance estimation procedure for a new turbo-rotary compound engine (TURC) and an associated novel thermodynamic cycle. In this engine, two or multiple spools are lined up in series within the engine. In the front spool, positive displacement rotary vane type turbines drive axial compressor the performance of which were estimated using stage stacking calculations. In the back spool, axial turbine stages drive positive displacement rotary vane type compressors, the performa...
Direct Calculation of Entropy Generation by Solving Reynolds-Averaged Entropy Transport Equation in an Air-Cooled Turbine Cascade
Orhan, Omer Emre; Uzol, Oğuz (2012-06-15)
This paper presents an implementation of directly solving Reynolds-Averaged Entropy Transport equation as a part of the CFD solution to predict entropy generation rates in a two-dimensional turbine blade stator section. The Reynolds Averaged Entropy Transport and the necessary modeling. equations are implemented to a commercial CFD solver as a User Defined Scalar (UDS). The results are compared with those obtained by post-processing the temperature and velocity fields obtained by solving full Navier-Stokes ...
ELECTRIC DRIVE FOR FLYWHEEL ENERGY-STORAGE
TRIPATHY, SC (Elsevier BV, 1994-02-01)
This paper presents the results of experimental work on flywheel energy storage systems for city buses. An efficient electronic hardware scheme is used to start the flywheel and traction machines. This scheme has been designed, fabricated and tested in our laboratory. A low frequency a.c. has been derived from an inverter fed from a three-phase uncontrolled rectifier to start the commutatorless d.c. motors. Commutation is achieved by using a capacitor and two auxiliary thyristors, whose ratings could be a f...
Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes
ORHAN, Tugba; Isitman, Nihat Ali; Hacaloğlu, Jale; Kaynak, Cevdet (2012-03-01)
Filler nanoparticles pave the way for the development of novel halogen-free flame-retardant polymers. The aim of this study was to investigate the thermal degradability, and in particular, the thermal degradation mechanism of organophosphorus flame-retardant poly(methyl methacrylate) (PMMA) nanocomposites containing nanoclay (NC) and multi-walled carbon nanotubes (CNT). For this purpose, thermogravimetry and direct pyrolysis mass spectrometry analysis were utilized. The onset of degradation was delayed thro...
Defect acceptability under full-scale fretting fatigue tests for railway axles
Foletti, S.; Beretta, S.; Gurer, G. (2016-05-01)
This paper presents a new approach based on the application of a multiaxial high cycle fatigue criterion together with the use of El-Haddad correction for investigation of fretting fatigue in railway axles. Stress path along the axle-wheel contact, determined by the FE analysis, was implemented into different multiaxial fatigue criteria in order to predict critical sites of nucleation. The equivalent fatigue limit expressed by the applied criterion is compared with the crack size dependent fatigue limit des...
Citation Formats
I. S. Akmandor, T. Ercan, and M. Karaca, “Turbo-rotary compound engine (TRCE) and novel thermodynamic cycle,” 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/35855.