Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A single-crystal silicon symmetrical and decoupled gyroscope on insulating substrate
Date
2003-06-12
Author
Alper, SE
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
169
views
0
downloads
Cite This
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using dissolved wafer process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving a low bias drift. The 12-15mum-thick single-crystal silicon structural layer with an aspect ratio about 10 using DRIE patterning provides a high sense capacitance of 130fF, while the insulating substrate provides a low parasitic capacitance of only 20fF. Drive and sense mode resonance frequencies of the gyroscope are measured to be 39,010Hz and 38,570Hz, respectively. Measurement results reveal that the gyroscope provides a rate sensitivity of 0.01 deg/sec in 50Hz bandwidth at vacuum.
Subject Keywords
Instrumentation
,
Instruments
,
Engineering
URI
https://hdl.handle.net/11511/37483
DOI
https://doi.org/10.1109/sensor.2003.1217036
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate
Alper, Said Emre; Akın, Tayfun (2005-08-01)
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using the dissolved wafer microelectromechanical systems (MEMS) process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high-rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving low bias-drift. The 12-15-mu m-thick si...
A highly sensitive atomic force microscope for linear measurements of molecular forces in liquids
PATİL, S; MATEİ, G; DONG, H; HOFFMANN, PM; Karakose, M; Oral, Ahmet (AIP Publishing, 2005-10-01)
We describe a highly improved atomic force microscope for quantitative nanomechanical measurements in liquids. The main feature of this microscope is a modified fiber interferometer mounted on a five axis inertial slider which provides a deflection sensitivity that is significantly better than conventional laser deflection based systems. The measured low noise floor of 572.0 fm/root Hz provides excellent cantilever amplitude resolution. This allows us to operate the instrument far below resonance at extreme...
A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (Elsevier BV, 2007-03-30)
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m,...
A composite pulsating controller for achieving high-performance positioning
Tufekci, C. S.; Craig, K. C. (SAGE Publications, 2012-02-01)
A non-linear robust control algorithm called a composite pulsating controller (CPC), which attains high-performance positioning specifications, is presented. The CPC is designed specifically for real product applications that have certain limitations such as friction, motor sizing, amplifier saturation, computational power and like. The CPC is composed of a bang-bang controller, a nominal proportional-integral-derivative (PID) controller, a high-gain PID controller and a pulsating controller in accomplishin...
All 3-D Printed Free-Space Setup for Microwave Dielectric Characterization of Materials
Hajisaeid, Ehsan; Dericioğlu, Arcan Fehmi; Akyurtlu, Alkim (Institute of Electrical and Electronics Engineers (IEEE), 2018-08-01)
In this paper, the development of an all 3-D printed wide band (2-18 GHz) free-space measurement system for characterizing the complex dielectric properties of flexible as well as rigid materials was demonstrated. Each part of the setup was designed and simulated precisely to show the effect of the 3-D printed quasi-optical lenses placed in front of the wide band ridged horn antennas on the beam and radiation pattern. More than 10 parts of the setup were 3-D printed using two different 3-D printers, and the...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Alper and T. Akın, “A single-crystal silicon symmetrical and decoupled gyroscope on insulating substrate,” 2003, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37483.