A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate

2005-08-01
Alper, Said Emre
Akın, Tayfun
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using the dissolved wafer microelectromechanical systems (MEMS) process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high-rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving low bias-drift. The 12-15-mu m-thick single-crystal silicon structural layer with an aspect ratio of about 10 using DRIE patterning provides a high sense capacitance of 130 IF, while the insulating substrate provides a low parasitic capacitance of only 20 IF. A capacitive interface circuit fabricated in a 0.8-mu m CMOS process and having a sensitivity of 33 mV/fF is hybrid connected to the gyroscope. Drive and sense mode resonance frequencies of the gyroscope are measured to be 40.65 and 41.25 kHz, respectively, and their measured variations with temperature are +18.28 Hz/ degrees C and +18.32 Hz/ degrees C, respectively, in -40 degrees C to +85 degrees C temperature range. Initial tests show a rate resolution around 0.56 deg/s with slightly mismatched modes, which reveal that the gyroscope can provide a rate resolution of 0.030 deg/s in 50-Hz bandwidth at atmospheric pressure and 0.017 deg/s in 50-Hz bandwidth at vacuum operation with matched modes.
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

Suggestions

A single-crystal silicon symmetrical and decoupled gyroscope on insulating substrate
Alper, SE; Akın, Tayfun (2003-06-12)
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using dissolved wafer process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving a low bias drift. The 12-15mum-thick single-crystal silicon structural layer with...
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
Sonmezoglu, S.; Alper, S.E.; Akın, Tayfun (2013-06-20)
This paper presents a high performance, automatic mode-matched, single-mass, and fully-decoupled MEMS gyroscope with improved scale factor stability. The mode-matching system automatically achieves and maintains the matching between the drive and sense mode resonance frequencies with the help of dedicated frequency tuning electrodes (FTEs). This method isolates the drive and sense mode frequency response dynamics by keeping the proof mass voltage (V PM ) constant, improving the scale factor stability up to ...
A Capacitive MEMS Accelerometer Readout with Concurrent Detection and Feedback Using Discrete Components
Terzioglu, Yunus; Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (2014-05-08)
This paper presents an analog readout method for capacitive MEMS accelerometers in which the feedback actuation and capacitive detection are achieved simultaneously on the same electrode set. The presented circuit operates in closed-loop for improved linearity, and it is constructed in a hybrid platform package in which off-the-shelf discrete components are used together with the silicon-on-glass micro-accelerometer. The system is developed as a practical solution to reduce the complexity of the readout cir...
A simple out of plane capacitive MEMS accelerometer utilizing lateral and vertical electrodes for differential sensing
Terzioglu, Yunus; Kose, Talha; Azgın, Kıvanç; Akın, Tayfun (2015-11-01)
This paper presents an out-of-plane (z-axis) accelerometer, which incorporates the use of two different MEMS capacitive electrode structures in combination for implementing a linear closed-loop system. During the implementation, the complexity of the design and fabrication steps of the sensing element is kept at a minimum. The proposed accelerometer uses capacitive MEMS sensing element fabricated with a 4-mask process. This sensing element includes a comb finger type lateral electrode and a vertical paralle...
Citation Formats
S. E. Alper and T. Akın, “A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, pp. 707–717, 2005, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46212.