alpha-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature

2000-06-01
The kinetics of hydroxyapatite (HAp) formation by direct hydrolysis of alpha-tricalcium phosphate (alpha-TCP) [alpha-Ca-3(PO4)(2)] have been investigated. Transformation kinetics were examined for reactions at 37 degrees C, 45 degrees C and 56 degrees C by isothermal calorimetric analysis. Setting times and morphologies of the resultant HAp were found to be strongly dependent on reaction temperature. XRD analysis accompanied by FTIR confirmed that phase pure calcium-deficient hydroxyapatite (CDHAp) [Ca10-x(HPO4)(x)(PO4)(6-x)(OH)(2-x)] was formed. Complete reaction occurs within 18, 11, 6.5 h at 37, 45 and 56 degrees C, respectively. The extent of HAp formation differs for particulate slurries and pre-shaped forms of reactant alpha-TCP. Formation of hydroxyapatite in pre-formed pellets was hindered due to limited water penetration, but enhanced with the presence of NaCl as a pore generator. Regardless of the precursor characteristics and temperature, HAp formation is characterized by an initial period of wetting of the alpha-TCP precursor, an induction period and a growth period during which the bulk transformation to HAp occurs. The microstructures of the resultant HAp at all temperatures were generally similar and are characterized by the formation porous flake-like morphology. Microstructural coarsening was observed for the CDHAp formed above the physiological temperature. The hardening generated by the hydrolysis reaction was demonstrated using diametrical compression tests. The original tensile strength of 56% dense alpha-TCP increased from 0.70 +/- 0.1 MPa to 9.36 +/- 0.4 MPa after hydrolysis to CDHAp at 37 degrees C, corresponding to a density of 70%. (C) 2000 Kluwer Academic Publishers.
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE

Suggestions

Copper-catalyzed asymmetric conjugate addition of diethylzinc to substituted chalcones using a chiral phosphine ligand
Doğan, Özdemir; Polat, Savas; Tecimer, M. Ali (2011-09-15)
A series of chiral phosphine PFAM and phosphine oxide POFAM ligands were studied for the copper-catalyzed asymmetric diethylzinc addition to enones. One of these ligands, PFAM2, was an efficient catalyst with a variety of enones to give conjugate addition products in up to 96% yield and 92% ee.
Replacement of the Basic and Acidic Components of Magnesium Potassium Phosphate Cement with Calcium Sulphoaluminate Cement and Fly Ash Phosphate Salts
Mazaheri Shadbad, Hossein; Erdoğan, Sinan Turhan; Akgül, Çağla; Department of Civil Engineering (2022-12-02)
Magnesium phosphate cement (MPC) is an acid-base cement with applications as a construction material. This cement has properties superior to portland cement like high early strength. However, MPC has a short setting time, high heat of hydration, and poor water resistance. In addition, this cement uses dead-burned magnesium oxide, prepared at around 1500 ˚C, which consumes much energy, releases CO2, and increases cost. In this study, the two main components of magnesium potassium phosphate cement, dead-burne...
Comparison of test methods on the compressive strength of slag and natural pozzolan cements
Tokgöz, Abdullah Usame; Tokyay, Mustafa; Yaman, İsmail Özgür; Department of Civil Engineering (2014)
Among the two standard test methods of determining the compressive strength of cements which are described in EN 196-1 and ASTM C 109, the basic differences is in the amount of water used in preparing the mortars. According to EN 196-1 the former uses a constant water-cement ratio of 0.50 in the preparation of mortar specimens, for all types of cements whereas the latter uses a constant water-cement ratio of 0.485 and 0.460 for Portland and air-entrained Portland cements, respectively; and water-cement rati...
Pyrolysis mass spectrometric analysis of styrene-butadiene block and random copolymers
Hacaloğlu, Jale; Ertugrul, Nergis; Fares, Muhammed M.; Suzer, Sefik (1997-01-01)
rect pyrolysis mass spectrometric analysis of a styrene-butadiene-styrene block copolymer indicated that thermal decomposition of each block shows a resemblance to the related homopolymer, giving a possibility of differentiation of blocks. However, the random analog, the styrene butadiene rubber, degraded in a manner that is somewhat in between in nature of the thermal characteristics of both homopolymers. This technique shows promise to differentiate thermal behaviors of each sequence in block polymers if ...
Thermal characterization of different origin class-G cements
Kök, Mustafa Verşan (2014-02-01)
In this study, thermal characteristics and kinetics of three different origin class-G cements (Mix, Bolu, and Nuh) were studied using thermogravimetry (TG/DTG) and differential scanning calorimeter (DSC). In DSC curves at different heating rates a number of peaks were observed consistently in different temperature intervals. TG/DTG is used to identify the detected phases and the corresponding mass loss. In the dehydration kinetic study of the different origin class-G cement samples, three different methods ...
Citation Formats
C. Durucan, “alpha-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature,” JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, pp. 365–371, 2000, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37681.