Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Device application of AgGa0.5In0.5Se2 thin films deposited by thermal sequential stacked layer method
Date
2014-12-01
Author
COŞKUN, EMRE
Gullu, H. H.
Parlak, Mehmet
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
186
views
0
downloads
Cite This
An In/n-AgGa0.5In0.5Se2/p-Si/Al heterostructure was produced by thermal sequential stacked layer deposition method and the device characteristics were investigated. The compositional analysis showed that the depositions of the intended stoichiometric composition of AgGa0.5In0.5Se2 structure were obtainable by controlling and providing the necessary deposition conditions during the deposition processes. By means of the room temperature Hall effect and transmission measurements, the carrier concentration and optical band gap values were determined as 9 x 10(15) cm(-3) and 1.65 eV, respectively. In addition, temperature- dependent current-voltage (I-V) and the room temperature capacitance-voltage (C-V) measurements of this heterostructure were carried out. The rectification factor was obtained as about 10(4) at 1.20V for all sample temperatures. Depending on the change in the temperature, the series and shunt resistances were calculated as 10(1) and 10(6) Omega, respectively. The studies on the current transport mechanisms showed that there were two different mechanisms at two different voltage regions: tunneling enhanced recombination mechanism in the voltage range of 0.08 and 0.30V and the space charge limited current mechanism in the voltage range of 0.30 and 0.60 V. The barrier height, built-in potential and interface states density of the deposited heterostructure were also calculated and discussed.
Subject Keywords
Electronic, Optical and Magnetic Materials
,
Surfaces, Coatings and Films
,
Polymers and Plastics
,
Metals and Alloys
,
Biomaterials
URI
https://hdl.handle.net/11511/37929
Journal
MATERIALS RESEARCH EXPRESS
DOI
https://doi.org/10.1088/2053-1591/1/4/046407
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Experimental insight into the performance characteristics of Ni-mesh semiconductor photo-electrochemical cells
Bayer, I; Eroğlu, İnci; Turker, L (Elsevier BV, 2000-04-15)
The performance characteristics of two photo-electrochemical cells with different cell configurations were investigated at 25 degrees C and within the illumination range of 70-100 W/m(2). These cells included a jacketed single cell (JSC) and a jacketed two-compartment cell (JTC). Ni-mesh was used as a counter electrode and as a backing material for semiconductor electrodes. Semiconductor electrodes were prepared by silk-screen painting technique using TiO2, WO3, PbO, Sb2S3, ZnO, Al2O3 or CuO powder mixed wi...
Frequency effect on electrical and dielectric characteristics of In/Cu2ZnSnTe4/Si/Ag diode structure
Gullu, H. H.; Surucu, O. Bayrakli; Terlemezoğlu, Makbule; Yildiz, D. E.; Parlak, Mehmet (Springer Science and Business Media LLC, 2019-05-01)
In/Cu2ZnSnTe4/Si/Ag diode structure was fabricated by sputtering Cu2ZnSnTe4 (CZTTe) thin film layer on the Si layer with In front contact. The frequency dependent room temperature capacitance and conductance measurements were carried out to obtain detailed information of its electrical characteristics. Admittance spectra of the diode exhibited strong frequency dependence and the obtained values showed decreasing behavior with the increase in the applied frequency. The effect of interfacial film layer with s...
Sequential Deposition of Electrochromic MoO3 Thin Films with High Coloration Efficiency and Stability
Turel, Onur; Hacioglu, Serife O.; Coskun, Sahin; Toppare, Levent Kamil; Ünalan, Hüsnü Emrah (The Electrochemical Society, 2017-01-01)
Effect of thin film deposition route on the morphology and performance of molybdenum oxide (MoO3) based electrochromic devices was investigated. For the deposition of thin films, a sequential deposition method, which includes ultrasonic spray pyrolysis (USP) and thermal evaporation methods was used. Films deposited solely using either USP or thermal evaporation method were used as control samples. Following deposition, MoO3 thin films were then characterized using X-ray diffraction, X-ray photoelectron spec...
Metamaterial Absorber Based Multifunctional Sensors
Sabah, Cumali (The Electrochemical Society, 2016-01-01)
In this paper, several important applications of a metamaterial absorber (MA) based sensors such as temperature, pressure, moisture, and density are presented. Since the sensing ability mostly considers the resonance frequency, the frequency range where the resonance shifts occur linearly or non-linearly depending on the temperature, pressure, moisture, and density changes is selected carefully. The model is composed of X shaped resonators (XSR), dielectric substrate, the sensing layer, dielectric substrate...
Temperature-Dependent Electrical Characteristics of Au/Si3N4/4H n-SiC MIS Diode
Yigiterol, F.; Güllü, Hasan Hüseyin; Bayraklı, Özge; YILDIZ, DİLBER ESRA (Springer Science and Business Media LLC, 2018-05-01)
Electrical characteristics of the Au/Si3N4/4H n-SiC metal–insulator-semiconductor (MIS) diode were investigated under the temperature, T, interval of 160–400 K using current–voltage (I–V), capacitance–voltage (C−V) and conductance–voltage (G/ω−V) measurements. Firstly, the Schottky diode parameters as zero-bias barrier height (ΦB0) and ideality factor (n) were calculated according to the thermionic emission (TE) from forward bias I–V analysis in the whole working T. Experimental results showed that the valu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. COŞKUN, H. H. Gullu, and M. Parlak, “Device application of AgGa0.5In0.5Se2 thin films deposited by thermal sequential stacked layer method,”
MATERIALS RESEARCH EXPRESS
, pp. 0–0, 2014, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37929.