Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Application of computational fluid dynamics to predict hydrodynamic downpull on high head gates
Date
2017-01-01
Author
Köken, Mete
Aydın, İsmail
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
142
views
0
downloads
Cite This
Purpose - High head gates are commonly used in hydropower plants for flow regulation and emergence closure. Hydrodynamic downpull can be a critical parameter in design of the lifting mechanism. The purpose of this paper is to show that a simplified two-dimensional (2D) computational fluid dynamics solution can be used in the prediction of the downpull force on the gate lip by comparison of computed results to experimentally measured data.
Subject Keywords
Computational fluid dynamics
,
Downpull
,
Downpull coefficient
,
High head gates
URI
https://hdl.handle.net/11511/37988
Journal
ENGINEERING COMPUTATIONS
DOI
https://doi.org/10.1108/ec-04-2016-0137
Collections
Department of Civil Engineering, Article
Suggestions
OpenMETU
Core
Numerical investigation of cavitating flow in variable area venturi on the basis of experimental data
Gümüşel, Hasan Tolg; Aksel, Mehmet Haluk.; Department of Mechanical Engineering (2019)
Variable area cavitating Venturi is a throttling device that can regulate the flow rate used in liquid and hybrid rocket motors. It has a pintle mechanism which adjusts the flow area by moving back and forth in the direction parallel to the outflow from the Venturi. The flow rate is independent of the downstream pressure due to cavitation. This makes the variable area cavitating Venturi a very critical component for liquid propellant rocket engine because it can create an isolation between the inlet and the...
Prediction of downpull on high head gates using computational fluid dynamics
Uysal, Mehmet Akış; Köken, Mete; Aydın, İsmail; Department of Civil Engineering (2014)
For design purposes it is important to predict the downpull forces on the tunnel gates installed in the intake of a hydropower plant. In this study downpull forces on the gates are evaluated for different closure rates and for different gate lip geometries using computational fluid dynamics and the results are compared to an existing experimental study. Commercial ANSYS FLUENT software is used in the calculations. It is found that downpull coefficients obtained from computational study showed good agreement...
Investigation of waterhammer problems in the penstocks of small hydropower plants
Çalamak, Melih; Bozkuş, Zafer; Department of Civil Engineering (2010)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of chara...
Investigation of the effects of initial substrate and biomass concentrations and light intensity on photofermentative hydrogen gas production by Response Surface Methodology
Akman, Melih Can; Bayramoğlu, Tuba Hande; Gündüz, Ufuk; EROĞLU, İNCİ (2015-04-27)
Biohydrogen, which can be produced by dark fermentation and photofermentation processes, is a renewable and clean approach for hydrogen production. In this study, it was aimed to determine the operational conditions which satisfy the highest photofermentative hydrogen production rate in batch reactors. To that purpose, the effects of initial substrate concentration, initial volatile suspended solids (VSS) concentration and light intensity on photofermentation process, and their interactive effects were inve...
Development of a computer software for hydraulic design of small hydropower facility
Alimoğlu, Emir; Yanmaz, A Melih; Bozkuş, Zafer; Department of Civil Engineering (2012)
Run-of-river type hydroelectrical power plants are the facilities that use only the available flow on the river without storing it to generate electrical energy. These kind of facilities are composed of structural components such as diversion weir, conveyance line, forebay, penstock and power house. In this thesis, a computer program called “MiniHEPP Hydraulic Design” is developed in order to perform the hydraulic design of run-of-river type hydropower plants. This program which runs under the Windows opera...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Köken and İ. Aydın, “Application of computational fluid dynamics to predict hydrodynamic downpull on high head gates,”
ENGINEERING COMPUTATIONS
, pp. 1191–1203, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/37988.