Electrochemical polymerization of hexachloroethane to form poly(hydridocarbyne): a pre-ceramic polymer for diamond production

Nur, Yusuf
Cengiz, Halime M.
Pitcher, Michael W.
Toppare, Levent Kamil
Due to its structural similarity with diamond, poly(hydridocarbyne) (PHC), which is sp(3)-hybridized, is a unique polymer that can be easily converted to diamond and diamond-like-carbon ceramics upon heating. PHC can be easily synthesized via the electrochemical polymerization of chloroform as previously reported. Here, we report the electrosynthesis of PHC from hexachloroethane. Since hexachloroethane has six chlorine atoms in its structure, polymerization takes place through the carbons simultaneously. Thus, the polymer is bigger in chain length than PHC obtained from the polymerization of chloroform. UV-vis, FTIR, and NMR spectroscopy were utilized to determine the polymer structure. Conversion of the polymer to diamond was accomplished by heating at 1000 A degrees C under a nitrogen atmosphere as confirmed by Optical Microscopy and Raman analysis. XRD studies showed that the product is an assortment of diamond forms.


Excessive damage increase in dual phase steels under high strain rates and temperatures
Cobanoglu, Merve; Ertan, Rasim K.; Şimşir, Caner; Efe, Mert (SAGE Publications, 2020-09-01)
Damage formation in dual phase steels is a complex process and it may be sensitive to the deformation conditions and mechanisms. In this study, the damage parameter is measured and compared under quasi-static and industrial forming conditions (temperatures: 25 vs 200, 300 degrees C and strain rates: 10(-3)vs 10 s(-1)) for DP590 and DP800 steels. Resonance frequency and ultrasonic sound velocity techniques are utilized for the measurements to test the effectiveness and validity of each technique. At a given ...
Edge cracks in a transversely isotropic hollow cylinder
Kadıoğlu, Fevzi Suat (Elsevier BV, 2005-09-01)
The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associat...
Test method for determining the shear modulus of elastomeric bearings
Topkaya, Cem (American Society of Civil Engineers (ASCE), 2002-06-01)
The shear modulus of the elastomer is the most important material property related to the behavior of elastomeric bearings used principally at supports in bridges. Current methods for determining the shear modulus usually require small test samples cut from manufactured bearings. Such tests are costly, do not necessarily represent the performance of the full-size bearing, and are destructive. A new shear test method, called the inclined compression test, is reported that is nondestructive and only requires ...
DAG, O; KUPERMAN, A; OZIN, GA (Wiley, 1994-02-01)
Uniform arrays of intrazeolite germanium nanoclusters have been produced by the topotactic chemical vapor deposition of digermane within the diamond network of alpha-cages of acid zeolite Y and the main channel of mordenite. The conditions within the zeolite hosts ensure that the Ge2H2 CVD-type anchored precursors self-assemble to produce the anchored (Ge8)n+ nanoclusters shown in the Figure.
Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models
Martin, Bryn A.; Kutluay, Umit; Yazıcıoğlu, Yiğit (ASTM International, 2013-09-01)
Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were pr...
Citation Formats
Y. Nur, H. M. Cengiz, M. W. Pitcher, and L. K. Toppare, “Electrochemical polymerization of hexachloroethane to form poly(hydridocarbyne): a pre-ceramic polymer for diamond production,” JOURNAL OF MATERIALS SCIENCE, pp. 2774–2779, 2009, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/38087.