Vector-Valued Probabilistic Seismic Hazard Assessment for the Effects of Vertical Ground Motions on the Seismic Response of Highway Bridges

The vertical ground motion component is disregarded in the design of ordinary highway bridges in California, except for the bridges located in high seismic zones (sites with design horizontal peak ground acceleration greater than 0.6 g). The influence of vertical ground motion on the seismic response of single-bent, two-span highway bridges designed according to Caltrans Seismic Design Code (SDC-2006) is evaluated. A probabilistic seismic hazard framework is used to address the probability of exceeding the elastic capacity for various structural parameters when the vertical component is included. Negative mid-span moment demand is found to be the structural parameter that is most sensitive to vertical accelerations. A series of hazard curves for negative mid-span moment are developed for a suite of sites in Northern California. The annual probability of exceeding the elastic capacity of the negative mid-span moment is as large as 0.01 for the sites close to active faults when the vertical component is included. Simplified approaches based on the distance to major faults or the median design peak acceleration show that there is a large chance (0.4 to 0.65) of exceeding the elastic limit if the current 0.6 g threshold is used for the consideration of vertical ground motions for ordinary highway bridges. The results of this study provide the technical basis for consideration of a revision of the 0.6 g threshold. [DOI: 10.1193/1.3464548]


Analytical Fragility Curves for Ordinary Highway Bridges in Turkey
AVŞAR, ÖZGÜR; Yakut, Ahmet; Caner, Alp (SAGE Publications, 2011-11-01)
This study focuses on the development of analytical fragility curves for the ordinary highway bridges constructed after the 1990s. Four major bridge classes were employed based on skew angle, number of columns per bent, and span number (only multispan bridges). Nonlinear response-history analyses (NRHA) were conducted for each bridge sample using a detailed 3-D analytical model subjected to earthquake ground motions of varying seismic intensities. A component-based approach that uses several engineering dem...
Consistent Source-to-Site Distance Metrics in Ground-Motion Prediction Equations and Seismic Source Models for PSHA
Bommer, Julian J.; Akkar, Dede Sinan (SAGE Publications, 2012-02-01)
Most modern ground-motion prediction equations (GMPE) use definitions of the source-to-site distance that reflect the dimensions of the fault rupture for larger earthquakes rather than using point-source measures relative to the epicenter or hypocenter. This is a positive development since it more realistically reflects the fact that energy is released from the crust around the entire fault rupture during a large earthquake. However, seismic source configurations defined for probabilistic seismic hazard ana...
Empirical attenuation equations for vertical ground motion in Turkey
Kalkan, E; Gulkan, P (SAGE Publications, 2004-08-01)
In the aftermath of two destructive urban earthquakes in 1999 in Turkey, empirical models of strong motion attenuation relationships that have been previously developed for North American and European earthquakes have been utilized in a number of national seismic hazard studies.. However, comparison of empirical evidence and estimates present significant differences. For that reason, a data set created from a suite of 100 vertical strong ground motion records from 47 national earthquakes that occurred betwe...
Seismic demand models for probabilistic risk analysis of near fault vertical ground motion effects on ordinary highway bridges
Gülerce, Zeynep; Kunnath, Sashi K.; Abrahamson, Norman A. (Wiley, 2012-02-01)
The influence of vertical ground motions on the seismic response of highway bridges is not very well understood. Recent studies suggest that vertical ground motions can substantially increase force and moment demands on bridge columns and girders and cannot be overlooked in seismic design of bridge structures. For an evaluation of vertical ground motion effects on the response of single-bent two-span highway bridges, a systematic study combining the critical engineering demand parameters (EDPs) and ground m...
Ground Motion Prediction Equations for the Vertical Ground Motion Component Based on the NGA-W2 Database
Gülerce, Zeynep; Abrahamson, Norman A.; Silva, Walter J. (SAGE Publications, 2017-05-01)
Empirical ground motion models for the vertical component from shallow crustal earthquakes in active tectonic regions are derived using the PEER NGA-West2 database. The model is applicable to magnitudes 3.0-8.0, distances of 0-300 km, and spectral periods of 0-10 s. The model input parameters are the same as used by Abrahamson et al. (2014) except that the nonlinear site response and depth to bedrock effects are evaluated but found to be insignificant. Regional differences in large distance attenuation and ...
Citation Formats
Z. Gülerce, “Vector-Valued Probabilistic Seismic Hazard Assessment for the Effects of Vertical Ground Motions on the Seismic Response of Highway Bridges,” EARTHQUAKE SPECTRA, pp. 999–1016, 2010, Accessed: 00, 2020. [Online]. Available: