Performance Degradation Analysis of an Iced TurbineBlade by Using Detached-Eddy Simulation

2018-05-14
Yırtıcı, Özcan
Cengiz, Kenan
Tuncer, İsmail Hakkı
Ice accretion on the turbine blades change the initial shape and this cause alteration in the aerodynamic characteristic of the blades. The objective of the study is to predict performance degradation on wind turbines due to icing. The aerodynamic coefficients are being computed using a Detached-eddy Simulation approach. The influence of the losses on turbine performance will be analyzed through a Blade Element Momentum methodology.

Suggestions

Aerodynamic validation studies on the performance analysis of iced wind turbine blades
YIRTICI, ÖZCAN; Cengiz, Kenan; Özgen, Serkan; Tuncer, İsmail Hakkı (Elsevier BV, 2019-10-15)
Ice accretion on wind turbine blades distorts blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions, and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model in a parallel computing environment. The predicted iced profiles are first validated with the experimen...
Wind Turbine Performance Losses Due to the Ice Accretion on the Turbine Blades
Yirtici, Ozcan; Sevine, Tansu; Özgen, Serkan; Tuncer, İsmail Hakkı (2018-01-01)
Ice accretion on wind turbine blades modifies the blade profiles and causes degradation in the aerodynamic characteristic of the blades. In this study ice accretion on turbine blades are simulated under various icing conditions and the resulting power losses are estimated. The Blade Element Momentum method is employed together with an ice accretion prediction methodology based on the Extended Messinger model and 2D flow solvers XFOIL and SU2. The predicted iced profiles are first validated with the experime...
Aerodynamic Shape Optimization for Reducing Ice Induced Losses on Wind Turbine Blades
Yırtıcı, Özcan; Tuncer, İsmail Hakkı (null; 2019-05-14)
Ice accretion on wind turbines modifies the blade shape profile and causes alteration in the aerodynamic characteristics of the blades. The objective of this study is to optimize the blade geometry to reduce performance losses by minimizing ice accretion in cold climate regions and mountainous areas where wind energy resources are plentifully found. In this study, The Gradient Based Optimization Method and Blade Element Momentum Method will be employed together with an ice accretion prediction tool for esti...
Ice Accretion Prediction on Wind Turbines and Consequent Power Losses
YIRTICI, ÖZCAN; Tuncer, İsmail Hakkı; Özgen, Serkan (2016-10-07)
Ice accretion on wind turbine blades modifies the sectional profiles and causes alteration in the aerodynamic characteristic of the blades. The objective of this study is to determine performance losses on wind turbines due to the formation of ice in cold climate regions and mountainous areas where wind energy resources are found. In this study, the Blade Element Momentum method is employed together with an ice accretion prediction tool in order to estimate the ice build-up on wind turbine blades and the en...
Aerodynamic Optimization of a Swept Horizontal Axis Wind Turbine Blade
Kaya, Mehmet Numan; Kose, Faruk; Uzol, Oğuz; Ingham, Derek; Ma, Lin; Pourkashanian, Mohamed (2021-09-01)
The aerodynamic shapes of the blades are still of high importance and various aerodynamic designs have been developed in order to increase the amount of energy production. In this study, a swept horizontal axis wind turbine blade has been optimized to increase the aerodynamic efficiency using the computational fluid dynamics method. To illustrate the technique, a wind turbine with a rotor diameter of 0.94 m has been used as the baseline turbine, and the most appropriate swept blade design parameters, namely...
Citation Formats
Ö. Yırtıcı, K. Cengiz, and İ. H. Tuncer, “Performance Degradation Analysis of an Iced TurbineBlade by Using Detached-Eddy Simulation,” presented at the Parallel CFD 2018, Indianapolis, Amerika Birleşik Devletleri, 2018, Accessed: 00, 2021. [Online]. Available: https://hdl.handle.net/11511/86640.