Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Bacillus subtilis overproduces industrially important extracellular enzymes upon the targeted deletion of bacilysin biosynthetic operon
Date
2018-10-10
Author
Özcengiz, Gülay
Aytekin, S.
Islerel, E. Tekin
Aktas, C.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
9
views
0
downloads
Bacilysin being produced by Bacillus subtilis is the smallest peptide antibiotic ever known. It is composed of an N-terminal l-alanine and a modified amino acid at its C-terminal, namely anticapsin. bacABCDEF operon and a monocistronic gene bacG are functional for bacilysin production in the organism, bacABCDFG being needed for the flux from prephenate to anticapsin and then to mature bacilysin while bacE gene within the operon is involved in resistance of the producer by pumping bacilysin out of the cell. Our earlier studies demonstrated that quorum sensing global regulation operates in bacilysin biosynthesis through the action of ComQ/ComX, PhrC (CSF), ComP/ComA and molecular regulation also requires an intact surfactin biosynthetic operon, srfA. We recently performed a dynamic secretome analysis of B. subtilis PY79 and its bac operon-deleted derivative OGU1 by taking 2DE MALDI TOF/MS and LC–MS MS as complementary approaches and identified ca. 200 proteins (extracellular, membrane and wall-associated proteins) differentially expressed between two strains. Since B. subtilis is one of the most important cell-factories with a significant capacity to produce a wide range of extracellular enzymes, of biotechnological interest was a significant increment in levels of the industrially-important extracellular enzymes upon the deletion of bac operon. These enzymes included chitosanase, arabinanase, levanase, lipase, phytase, endonuclease, bacillopeptidase F and minor extracellular protease. In this report, the results of quantitative transcript analysis of the respective csn, abn2, sac, estA, phy, yhcR, bpr and vpr genes as well as enzymatic activities of their products are presented.
Subject Keywords
Biotechnology
,
Bioengineering
,
Molecular Biology
,
General Medicine
URI
https://hdl.handle.net/11511/39515
Journal
NEW BIOTECHNOLOGY
DOI
https://doi.org/10.1016/j.nbt.2018.05.940
Collections
Department of Biology, Article