BACILYSIN PRODUCTION BY BACILLUS-SUBTILIS - EFFECTS OF BACILYSIN, PH AND TEMPERATURE

1991-01-01
The dipeptide antibiotic bacilysin, when added externally to the early exponential-phase cultures, markedly limited its own synthesis. It was shown in cell-free extracts that the feedback effect does not involve the inhibition of bacilysin synthetase, the enzyme catalyzing bacilysin formation. We also studied pH and temperature dependence of bacilysin production. Production was highest at about pH 6.8 and at 25-degrees-C.
FOLIA MICROBIOLOGICA

Suggestions

Analysis of a bac operon-silenced strain suggests pleiotropic effects of bacilysin in Bacillus subtilis
Ertekin, Ozan; Taskin, Ash Aras; Demir, Mustafa; Karataş, Ayten; Özcengiz, Gülay (Springer Science and Business Media LLC, 2020-04-01)
Bacilysin, as the simplest peptide antibiotic made up of only L-alanine and L-anticapsin, is produced and excreted by Bacillus subtilis under the control of quorum sensing. We analyzed bacilysin-nonproducing strain OGU1 which was obtained by bacA-targeted pMutin T3 insertion into the parental strain genome resulting in a genomic organization (bacA '::lacZ::erm::bacABCDEF) to form an IPTG-inducible bac operon. Although IPTG induction provided 3- to 5-fold increment in the transcription of bac operon genes, n...
Bacilysin biosynthesis by a partially-purified enzyme fraction from Bacillus subtilis
Yazgan, A; Özcengiz, Gülay; Ozcengiz, E; Kilinc, K; Marahiel, MA; Alaeddinoglu, NG (Elsevier BV, 2001-10-04)
Biosynthesis of dipeptide antibiotic bacilysin by a partially purified enzyme prepared from Bacillus subtilis PY79 was studied. Cell material was desintegrated by treatment with lysozyme and sonication and the extract was subjected to ammonium sulfate fractionation. Bacilysin-synthesizing enzyme activity was precipitated between 40% to 70% ammonium sulfate saturation. In vitro enzymatical synthesis of bacilysin was confirmed by performing thin layer chromatographic comparison of the antibiotic formed with t...
Trehalose, glycogen and ethanol metabolism in the gcr1 mutant of Saccharomyces cerevisiae.
Şeker, Tamay (Springer Science and Business Media LLC, 2003-01-01)
Since Gcr1p is pivotal in controlling the transcription of glycolytic enzymes and trehalose metabolism seems to be one of the control points of glycolysis, we examined trehalose and glycogen synthesis in response to 2 % glucose pulse during batch growth ingcr1 (glucose regulation-1) mutant lacking fully functional glycolytic pathway and in the wild-type strain. An increase in both trehalose and glycogen stores was observed 1 and 2 h after the pulse followed by a steady decrease in both the wild-type and the...
Targeted disruption of homoserine dehydrogenase gene in Streptomyces clavuligerus and its effects on cephamycin C production
Çaydaşı (Koca), Ayşe; Özcengiz, Gülay; Department of Biology (2006)
The members of the genus Streptomyces are well-known for their capacity to synthesize a vast repertoire of secondary metabolites, including many useful antibiotics and proteins. Streptomyces clavuligerus is the producer of the medically important β-lactam antibiotics such as cephamycin C and the potent β-lactamase inhibitor clavulanic acid. The aspartate pathway of S. clavuligerus is an important primary metabolic pathway providing substrates for β-lactam synthesis. This pathway uses L-aspartic acid as the ...
Bacillus subtilis overproduces industrially important extracellular enzymes upon the targeted deletion of bacilysin biosynthetic operon
Özcengiz, Gülay; Islerel, E. Tekin; Aktas, C. (Elsevier BV, 2018-10-10)
Bacilysin being produced by Bacillus subtilis is the smallest peptide antibiotic ever known. It is composed of an N-terminal l-alanine and a modified amino acid at its C-terminal, namely anticapsin. bacABCDEF operon and a monocistronic gene bacG are functional for bacilysin production in the organism, bacABCDFG being needed for the flux from prephenate to anticapsin and then to mature bacilysin while bacE gene within the operon is involved in resistance of the producer by pumping bacilysin out of the cell. ...
Citation Formats
G. Özcengiz, “BACILYSIN PRODUCTION BY BACILLUS-SUBTILIS - EFFECTS OF BACILYSIN, PH AND TEMPERATURE,” FOLIA MICROBIOLOGICA, pp. 522–526, 1991, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/48704.