Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Immobilization of fluorescent bacterial bioreporter for arsenic detection
Date
2020-06-01
Author
ELÇİN, EVRİM
Öktem, Hüseyin Avni
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
167
views
0
downloads
Cite This
Whole-cell bacterial biosensors hold great promise as a practical complementary approach for in-field detection of arsenic. Although there are various bacterial bioreporter systems for arsenic detection, fewer studies reported the immobilization of arsenic bioreporters. This study aimed at determining immobilization of specific bacterial bioreporter in agar and alginate biopolymers to measure level of arsenite and/or arsenate. To achieve sensitive detection, immobilization parameters of polymer concentration and cell density were evaluated. Moreover, by changing the culture medium, immobilized bioreporter cells in minimal medium can detect arsenite while they can detect both arsenite and arsenate in phosphate-limited minimal medium. When optimal parameters were applied, agar and alginate immobilized bioreporter systems can detect arsenite and arsenate concentrations of 10 mu g/l and 200 mu g/l within 5 h and 2 h, respectively. The results showed that the immobilized bacterial bioreporter systems are able to determine the concentrations of the two abundant species of arsenic; arsenite and arsenate, as opposed to other studies which reported only arsenite detection. This is the first study describe agar hydrogel and alginate bead immobilization of fluorescent arsenic bacterial bioreporter that can detect both arsenite and arsenate at the safe drinking water limit. Thus, this study will enable further steps to be taken towards developing sensitive and selective portable devices to assess environmental arsenic contamination and prevent acute arsenic toxicity.
Subject Keywords
Environmental Engineering
,
Waste Management and Disposal
,
Public Health, Environmental and Occupational Health
,
Applied Microbiology and Biotechnology
,
Pollution
,
Health, Toxicology and Mutagenesis
,
Water Science and Technology
URI
https://hdl.handle.net/11511/39951
Journal
JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING
DOI
https://doi.org/10.1007/s40201-020-00447-2
Collections
Department of Biology, Article
Suggestions
OpenMETU
Core
Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model
Demirtepe, Hale; Kjellerup, Birthe; Sowers, Kevin R.; İmamoğlu, İpek (Elsevier BV, 2015-10-15)
A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quant...
Sorption of radioactive cesium and barium ions onto solid humic acid
Celebi, O.; Kilikli, A.; ERTEN, HASAN NİYAZİ (Elsevier BV, 2009-09-15)
In this study, the sorption behavior of two important fission product radionuclides ((137)Cs and (140)Ba) onto sodium form of insolubilized humic acid (INaA) were investigated as a function of time, cation concentration and temperature, utilizing the radiotracer method. The sorption processes are well described by both Freundlich and Dubinin-Radushkevich type isotherms. Thermodynamic constants such as: free energy (Delta G(ads)), enthalpy (Delta H(ads)), entropy (Delta S(ads)) of adsorption were determined....
Quantum chemical treatment of cyanogen azide and its univalent and divalent ionic forms
Türker, Burhan Lemi; Atalar, Taner (Elsevier BV, 2008-05-30)
An explosive material, cyanogen azide (CN4) and its univalent and divalent anionic and cationic forms have been studied quantum chemically by using different theoretical approaches. In this study, the structures considered have been screened for their relative stabilities. Also, they have been investigated whether the charged forms play a role in the usual explosion process or any electrical charging during storage cause explosion. Various quantum chemical properties are obtained and discussed. It has been ...
Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation
Sesay, Ml; Özcengiz, Gülay; Sanin, Faika Dilek (Elsevier BV, 2006-04-01)
This study examines enzyme hydrolysis, a mild, effective, but a rarely used method of extracellular polymer extraction, in removing polymers from mixed culture activated sludge flocs. Two carbohydrate specific enzymes (a-amylase and cellulase) and a protein specific enzyme (proteinase) are used during the study. First, the kinetic aspect is investigated, then enzyme dose optimization is carried out on laboratory grown activated sludge samples cultured at solids retention times (SRT) of 4 and 20 days. A more...
Rapid LC and LC/MS for routine analysis of mycotoxins in foods
Senyuva, H.; Gilbert, J.; Özcan Kabasakal, Süreyya; Gurel, N. (Wageningen Academic Publishers, 2008-08-01)
Affinity column clean-up of food samples for mycotoxin analysis produces extracts which are free of co-extractives and therefore require little chromatography for separation and quantification of the target analytes. Using such clean extracts, we report rapid chromatographic methods for aflatoxins B(1), B(2), G(1) and G(2), aflatoxin M(1), ochratoxin A, zearalenone and fumonisins. Using short columns with small particle size packing, HPLC conditions have been developed reducing analysis time typically by 75...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. ELÇİN and H. A. Öktem, “Immobilization of fluorescent bacterial bioreporter for arsenic detection,”
JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING
, pp. 137–148, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/39951.