Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) - poly(1-vinylimidazole) Network

Isikli, Suheda
Tuncagil, Sevinc
Bozkurt, Ayhan
Toppare, Levent Kamil
A novel proton conducting polymer blend was prepared by mixing poly(vinylphosphonic acid) (PVPA) with poly(1-vinylimidazole) (PVI) at various stoichiometric ratios via changing molar ratio of monomer repeating unit to achieve the highest protonation. The polymer network having the most suitable stoichiometric ratio for substantial proton conductivity was prepared and characterized by FT-IR spectroscopy and proton conductivity measurements. The network was used for immobilization of invertase and some important kinetic parameters such as the maximum reaction rate (Vmax) and Michaelis-Menten constant (Km) were investigated for the immobilized invertase. Additionally, optimum temperature and pH were determined to acquire the best conditions for the highest enzyme activity. Operational stability of the entrapped enzyme was also examined. The results reveal that the most stable and highly proton conducting polymer network may play a pioneer role in the biosensors applications as given by FT-IR, elemental analysis, impedance spectroscopy and storage stability experiments.


Polypyrrole grafts synthesized via electrochemical polymerization
Balci, N; Toppare, Levent Kamil; Akbulut, Ural; Stanke, D; Hallensleben, ML (Informa UK Limited, 1998-01-01)
Electrically conducting polypyrrole grafts with poly[(methyl meth acrylate)-co-(2-(N-pyrrolyl) ethyl methacrylate)] (PMMA-co-PEMA) were synthesized by constant potential electrolysis. Cyclic Voltammetry, DSC, TGA, SEM and elemental analysis were used in order to characterize the free standing films. Conductivities of the polymers were measured by a four-probe technique.
Immobilization of Tyrosinase in Poly(2-thiophen-3-yl-alkyl ester) Derivatives
ÇAMURLU, PINAR; Kayahan, Senem; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
In this study, construction of novel biosensors for the determination of phenolic compound was performed via immobilization of tyrosinase during the electrochemical synthesis of conducting block copolymers of 2-thiophen-3-yl-alkyl ester derivatives with 3,4-ethylenedioxythiophene and synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT). The resultant biosensors were characterized in terms of their maximum reaction rates, Michaelis-Menten constants (Km), temperature and pH stabilities. All the copolymer mat...
Electrochromic properties of 'Trimeric' thiophene-pyrrole-thiophene derivative grown from electrodeposited 6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexan-1-amine and its copolymer
Tarkuc, Simge; Ak, Metin; Onurhan, Erdal; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
A centrosymmetric polymer precursor, namely 6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexan-1-amine (TPHA), was synthesized via a Knorr-Paal reaction using 1,4-di(2-thienyl)-1,4-butanedione and hexane-1,6-diamine. The resultant monomer was characterized by Nuclear Magnetic Resonance (H-1-NMR). Electroactivity of TPHA was investigated via cyclic voltammetry. The electronic structure and the nature of electrochromism in P(TPHA) and its copolymer with EDOT, (P(TPHA-co-EDOT)), were examined via spectroelectrochem...
Conducting polymer composites: Polypyrrole and poly(vinyl chloride vinyl acetate) copolymer
Balci, N; Bayramli, E; Toppare, Levent Kamil (Wiley, 1997-04-25)
Composites of a polypyrrole (PPy) and poly(vinyl chloride-vinyl acetate) copolymer (PVC-PVA) were prepared both chemically and electrochemically. An insulating polymer was retained in the blend and the thermal stability of the polymer was enhanced by polymerizing pyrrole into the host matrix in both cases. The composites prepared electrochemically gave the best results in terms of conductivity and air stability. (C) 1997 John Wiley & Sons, Inc.
Electrochromic properties of copolymer of terephthalic acid bis-(thiophen-3-yl-methyl) thioester with pyrrole
Tuerkarslan, Oezlem; Toppare, Levent Kamil (Informa UK Limited, 2007-01-01)
Terephthalic acid bis-(thiophen-3-yl-methyl) thioester ( TTMT) was synthesized via the reaction of thiophen-3-yl methanethiol with terephthaloyl dichloride. This 3-functionalized thiophene monomer was polymerized in the presence of pyrrole (Py) upon constant potential application. Spectroelectrochemistry experiments reflected a pi to pi* transition with a band gap energy of 2.4 eV for the copolymer. A dual type electrochromic device (ECD) of P(TTMT-co-Py) and poly(3,4-ethylenedioxythiophene) (PEDOT) was con...
Citation Formats
S. Isikli, S. Tuncagil, A. Bozkurt, and L. K. Toppare, “Immobilization of Invertase in a Novel Proton Conducting Poly(vinylphosphonic acid) - poly(1-vinylimidazole) Network,” JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, pp. 639–646, 2010, Accessed: 00, 2020. [Online]. Available: