Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
A sepiolite modified conducting polymer based biosensor
Date
2013-11-01
Author
SÖYLEMEZ, SANİYE
Kanik, Fulya Ekiz
Tarkuc, Simge
UDUM, YASEMİN
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
0
downloads
Cite This
A conducting polymer modified with sepiolite was utilized in the construction of a highly sensitive and fast amperometric cholesterol biosensor. In this study a monomer; (10,13-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)dibenzo[a,c]phenazine (PHED)) was synthesized and then its polymer was coated on a graphite electrode by electropolymerization to obtain a matrix for enzyme immobilization. Cholesterol oxidase was immobilized onto polymer coated electrode by adsorption technique. Sepiolite was introduced for a successful immobilization of the cholesterol oxidase. Immobilized enzyme kinetic parameters (K-M(app), I-max) were evaluated by Michaelis-Menten kinetics and calculated as 0.031 mM and 6.06 mu A, respectively. LOD and sensitivity were estimated as 0.36 mu M and 1.64 mA/mMcm(2). Characterization of designed biosensor was done to examine the effect of various factors such as enzyme amount, optimum pH and shelf-life. A novel accurate and inexpensive cholesterol biosensor was developed for the determination of total cholesterol in food samples.
Subject Keywords
Biotechnology
,
Physical and Theoretical Chemistry
,
Colloid and Surface Chemistry
,
Surfaces and Interfaces
,
General Medicine
URI
https://hdl.handle.net/11511/40212
Journal
COLLOIDS AND SURFACES B-BIOINTERFACES
DOI
https://doi.org/10.1016/j.colsurfb.2013.07.013
Collections
Department of Chemistry, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. SÖYLEMEZ, F. E. Kanik, S. Tarkuc, Y. UDUM, and L. K. Toppare, “A sepiolite modified conducting polymer based biosensor,”
COLLOIDS AND SURFACES B-BIOINTERFACES
, vol. 111, pp. 549–555, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/40212.