Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
A sepiolite modified conducting polymer based biosensor
Date
2013-11-01
Author
SÖYLEMEZ, SANİYE
Kanik, Fulya Ekiz
Tarkuc, Simge
UDUM, YASEMİN
Toppare, Levent Kamil
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
1
views
0
downloads
A conducting polymer modified with sepiolite was utilized in the construction of a highly sensitive and fast amperometric cholesterol biosensor. In this study a monomer; (10,13-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)dibenzo[a,c]phenazine (PHED)) was synthesized and then its polymer was coated on a graphite electrode by electropolymerization to obtain a matrix for enzyme immobilization. Cholesterol oxidase was immobilized onto polymer coated electrode by adsorption technique. Sepiolite was introduced for a successful immobilization of the cholesterol oxidase. Immobilized enzyme kinetic parameters (K-M(app), I-max) were evaluated by Michaelis-Menten kinetics and calculated as 0.031 mM and 6.06 mu A, respectively. LOD and sensitivity were estimated as 0.36 mu M and 1.64 mA/mMcm(2). Characterization of designed biosensor was done to examine the effect of various factors such as enzyme amount, optimum pH and shelf-life. A novel accurate and inexpensive cholesterol biosensor was developed for the determination of total cholesterol in food samples.
Subject Keywords
Biotechnology
,
Physical and Theoretical Chemistry
,
Colloid and Surface Chemistry
,
Surfaces and Interfaces
,
General Medicine
URI
https://hdl.handle.net/11511/40212
Journal
COLLOIDS AND SURFACES B-BIOINTERFACES
DOI
https://doi.org/10.1016/j.colsurfb.2013.07.013
Collections
Department of Chemistry, Article