3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues

Christensen, Rie Kjaer
Laier, Christoffer von Halling
Kızıltay, Aysel
Wilson, Sandra
Larsen, Niels Bent
We present a method for reproducible manufacture of multiassay platforms with tunable mechanical properties for muscle tissue strip analysis. The platforms result from stereolithographic 3D printing of low protein-binding poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Contractile microtissues have previously been engineered by immobilizing suspended cells in a confined hydrogel matrix with embedded anchoring cantilevers to facilitate muscle tissue strip formation. The 3D shape and mechanical properties of the confinement and the embedded cantilevers are critical for the tissue robustness. High-resolution 3D printing of PEGDA hydrogels offers full design freedom to engineer cantilever stiffness, while minimizing unwanted cell attachment. We demonstrate the applicability by generating suspended muscle tissue strips from C2C12 mouse myoblasts in a compliant fibrin-based hydrogel matrix. The full design freedom allows for new platform geometries that reduce local stress in the matrix and tissue, thus, reducing the risk of tissue fracture.


Thermal and dynamic mechanical properties of microwave and heat-cured poly(methyl methacrylate) used as dental base material
Muhtarogullari, IY; Dogan, A; Muhtarogullari, M; Usanmaz, Ali (Wiley, 1999-12-13)
In this study, the particle size distribution, molecular weight, thermal analysis (TGA) differential scanning calorimetry (DSC) and thermogravimetric analysis, and dynamic mechanical analysis (DMA) of poly(methyl methacrylate) used as dental base material were investigated. The commercial raw material used were prepared for microwave curing, and they were cured by microwave and conventional heat methods. The average particle size of the powder studied (103.1 mu m) were much larger than that of the commercia...
Multifunctional layer-by-layer modified chitosan/poly(ethylene glycol) hydrogels
Onat, Bora; Ulusan, Sinem; Banerjee, Sreeparna; Erel Göktepe, İrem (Elsevier BV, 2019-03-01)
We report the surface modification of chitosan/poly(ethylene glycol) (chitosan/PEG) hydrogel materials via layer-by-layer (LbL) technique using stimuli-responsive polymers. Water-soluble complexes of Tannic Acid (TA) and a broad-spectrum antibiotic, Ciprofloxacin (Cipro) were prepared and co-assembled at the surface of Chitosan/PEG hydrogels with poly(N-vinyl caprolactam) (PVCL). Compared to the bare hydrogels, the surface spreading and proliferation of human fibroblasts were significantly enhanced on preca...
Flexible and conducting composites of polypyrrole and polydimethylsiloxane
Cahmak, G; Kucukyavuz, Z; Kucukyavuz, S (Wiley, 2004-07-15)
Conductive and flexible polydimethylsiloxane (PDMS)/polypyrrole (PPy) composites were synthesized electrochemically. Electrochemical syntheses were performed at +1.10 V by using p-toluene sulfonic acid (PTSA) as supporting electrolyte and water as solvent. Composites were characterized by cyclic voltammetry, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and Fourier transform infrared spectroscopy. Conductivity measurements and mechanical tests were also perform...
Direct measurement of charge transport through helical poly(ethyl propiolate) nanorods wired into gaps in single walled carbon nanotubes
Wang, Nan; Yano, Koji; Durkan, Colm; Plank, Natalie; Welland, Mark E.; Zhang, Yan; Ünalan, Hüsnü Emrah; Mann, Mark; Amaratunga, G. A. J.; Milne, William I. (IOP Publishing, 2009-03-11)
We report the direct measurement of electrical transport through rod-like polymer molecules, of poly(ethyl propiolate) (PEP), utilizing single walled carbon nanotubes (SWNTs) as electrodes. The electrical properties of the devices were measured (i) before cutting a SWNT, (ii) when a SWNT was cut and (iii) after PEP deposition into the nanoscale gap in a cut SWNT. The gate-dependent electrical properties showed a reduction in current from I-on = 2.4 x 10(-7) A for SWNT devices to I-on = 3.6 x 10(-9) A for PE...
Indium tin oxide nanoparticles as anode for light-emitting diodes
Çırpan, Ali (Wiley, 2006-02-15)
Thin films of indium tin oxide (ITO) nanoparticles have been investigated as anode materials for polymer light-emitting diodes. A luminance efficiency (0.13 cd/ A), higher than that (0.09 cd/A) obtained in a control devices fabricated on conventional commercial ITO anodes were found. The thin films were made by spin coating of a suspension followed by annealing. The ITO nartoparticle films have a stable sheet resistance of 200 ohm/sq, and an optical transmittance greater than 86% over the range of 400-1000 ...
Citation Formats
R. K. Christensen, C. v. H. Laier, A. Kızıltay, S. Wilson, and N. B. Larsen, “3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues,” BIOMACROMOLECULES, pp. 356–365, 2020, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41020.