A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer

2017-04-01
GOKOGLAN, Tugba Ceren
SOYLEMEZ, Saniye
KESİK, Melis
DOGRU, Itir Bakis
TUREL, Onur
YÜKSEL, Recep
Ünalan, Hüsnü Emrah
Toppare, Levent Kamil
A novel flexible glucose biosensor using vertically aligned carbon nanotubes (VACNT) and a conjugated polymer (CP) was fabricated. A scaffold based on VACNT grown on aluminum foil (VACNT-Al foil) with poly (9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl)-end capped with 2,5-diphenyl-1,2,4-oxadiazole (PFLO) was used as the immobilization matrix for the glucose biosensor. Glucose oxidase (GOx) was immobilized on a modified indium tin oxide (ITO) coated polyethylene terephthalate (PET) electrode surface. The biosensor response at a potential of -0.7 V versus Ag wire was followed by the decrease in oxygen level as a result of enzymatic reaction. The biosensor exhibited a linear range between 0.02 mM and 0.5 mM glucose and kinetic parameters (K-M(app), I-max, limit of detection (LOD) and sensitivity) were estimated as 0.193 mM, 8.170 mu A, 7.035 x 10(-3) mM and 65.816 mu A/mM cm(2), respectively. Scanning electron microscopy (SEM) was used for surface characterization. The constructed biosensor was applied to determine the glucose content in several beverages.

Suggestions

A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing
BULUT, Umut; Oyku Sayin, Vuslat; Altin, Yasin; Can Cevher, Sevki; Çırpan, Ali; Celik Bedeloglu, Ayse; Soylemez, Saniye (2023-01-01)
Herein, a specific and stable biosensor for glucose using a flexible, modified electrode with a carbon nanofiber (CNF) and a novel conjugated polymer including three moieties of benzotriazole, benzodithiophene, and benzenediamine (P-BDT-BTz:BDA) as a platform was designed. For this purpose, polyacrylonitrile (PAN) nanofiber mats were obtained by a solution-based electrospinning method. PAN nanofiber mats were stabilized and carbonized to turn into carbon nanofibers and the sensing platform was formed by com...
Fabrication of a promising immobilization platform based on electrochemical synthesis of a conjugated polymer
Buber, Ece; SÖYLEMEZ, SANİYE; UDUM, YASEMİN; Toppare, Levent Kamil (2018-07-01)
Since conjugated polymers are an important class of materials with remarkable properties in biosensor applications, in this study, a novel glucose biosensor based on a conjugated polymer was fabricated via the electropolymerization of the monomer 10,13-bis(4-hexylthiophen-2-yl)dipyridol[3,2-a:2',3'-c]phenazine onto a graphite electrode surface. Glucose oxidase (GOx) was used as the model biological recognition element. As a result of the enzymatic reaction between GOx and glucose, the glucose amount was det...
Benzodithiophene bearing conjugated polymer-based surface anchoring for sensitive electrochemical glucose detection
BULUT, Umut; SAYIN, Vuslat Öykü; Cevher, Sevki Can; Çırpan, Ali; Soylemez, Saniye (2022-10-01)
An amino-functionalized, conjugated polymer (P(BDBT)) modified glassy carbon electrode (GCE) was employed as an immobilization platform for glucose oxidase (GOx) enzyme to assemble a novel glucose biosensor. Amino groups available on the polymer backbone served as bioconjugation sites for GOx via glutaraldehyde (GA). The biosensor response to the reduction in oxygen amount because of the enzyme reaction was monitored at –0.7 V potential versus Ag/AgCl. The biosensor displayed a broad linear range between 0....
A conducting polymer and a calixarene derivative A novel surface design for glucose detection
Gökoğlan, Ceren; Söylemez, Saniye; Kesik, Melis; Ünay, Hande; Sayın, Serkan; Çırpan, Ali; Yıldız, Hüseyin Bekir; Toppare, Levent Kamil (null; 2016-07-17)
In this study, a novel amperometric glucose biosensor based on a conducting polymer and a calixarene was developed. Conducting polymer of (2‐(2‐oc‐tyldodecyl)‐4,7‐di(selenoph‐2‐yl)‐2H‐benzo[d][1,2,3]triazole)) (SBTz) was used as the immobilization matrix for biomolecule deposition to achieve an effective surface design to detect glucose. After successful deposition of SBTz on graphite electrode, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture were used for improving biosensor character...
Construction and amperometric biosensing performance of a novel platform containing carbon nanotubes-zinc phthalocyanine and a conducting polymer
Buber, Ece; Yuzer, Abdulcelil; Soylemez, Saniye; Kesik, Melis; Ince, Mine; Toppare, Levent Kamil (2017-03-01)
A novel glucose oxidase (GOx) based amperometric biosensor utilizing a conducting polymer (CP), multi walled carbon nanotubes (MWCNTs) and a novel water soluble zinc phthalocyanine (ZnPc) was constructed. For this purpose, a novel ZnPc was synthesized to examine the role of being a part of support material for enzyme deposition. High water solubility was achieved with the introduction of tetra quaternized imidazolyl moieties at the peripheral positions of phthalocyanine. In order to fabricate the proposed b...
Citation Formats
T. C. GOKOGLAN et al., “A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer,” FOOD CHEMISTRY, pp. 299–305, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42240.