Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Synthesis, characterization, and catalytic activity of supported molybdenum Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation reaction
Date
2016-01-01
Author
Moradi-Shoeili, Zeinab
Zare, Maryam
Bagherzadeh, Mojtaba
Özkar, Saim
Akbayrak, Serdar
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
237
views
0
downloads
Cite This
A heterogeneous nanocatalyst was prepared via covalent anchoring of dioxomolybdenum(VI) Schiff base complex on core-shell structured Fe3O4@SiO2. The properties and the nature of the surface-fixed complex have been identified by a series of characterization techniques such as SEM, EDX, XRD, TGA, FT-IR, and VSM. The synthesized hybrid material was an efficient nanocatalyst for selective oxidation of olefins to corresponding epoxides with t-BuOOH in high yields and selectivity. The catalyst could be conveniently recovered by applying an external magnetic field and reused several times without significant loss of efficiency.
Subject Keywords
Physical and Theoretical Chemistry
,
Materials Chemistry
URI
https://hdl.handle.net/11511/41300
Journal
JOURNAL OF COORDINATION CHEMISTRY
DOI
https://doi.org/10.1080/00958972.2015.1137290
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Synthesis and structural characterization of a novel seven-coordinate cobalt(II) complex: 2,9-Bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride
BAYSAL, AKIN; AYDEMİR, MURAT; DURAP, FEYYAZ; Özkar, Saim; Yildirim, Leyla Tatar (Elsevier BV, 2011-05-31)
Condensation reaction of 2,9-dicarboxaldehyde-1,10-phenanthroline with 2-aminoethanol followed by NaBH4 reduction yielded the polydentate Schiff base ligand 2,9-bis(ethanolamine)-1,10-phenanthroline in its reduced form. This ligand was characterized by elemental analysis, LC-MS, IR, UV-Vis and NMR spectroscopy. Reaction of the reduced Schiff base ligand with aqueous solution of cobalt(II) chloride affords 2,9-bis(ethanolamine)-1,10-phenanthrolinechlorocobalt(II) chloride in high yield. Single crystals of th...
Synthesis of ferrocenyl pyrazoles by the reaction of (2-formyl-1-chlorovinyl)ferrocene with hydrazines
Zora, Metin (Elsevier BV, 2007-10-15)
Synthesis of ferrocenyl-substituted pyrazoles via the reaction between (2-formyl-1-chlorovinyl)ferrocene and hydrazine derivatives is described. Depending upon the substitution pattern of hydrazine, the reaction affords 1-alkyl/aryl-5-ferrocenylpyrazoles and/or 1-alkyl/ aryl-3-ferrocenylpyrazoles. The reaction appears to be general for a variety of hydrazine derivatives.
CHARACTERIZATION OF SILICA CATALYST SUPPORTS BY SINGLE AND MULTIPLE-QUANTUM PROTON NMR-SPECTROSCOPY
HWANG, SJ; Üner, Deniz; KING, TS; PRUSKI, M; GERSTEIN, BC (American Chemical Society (ACS), 1995-03-16)
Cab-O-Sil HS5, used as the support in silica supported ruthenium (Ru/SiO2) catalysts, was characterized via single and multiple quantum (MQ) H-1 NMR spectroscopy. The samples were studied both in the presence and in the absence of ruthenium. Single quantum spin counting of protons on silica support with and without ruthenium metal indicated that the total number of hydroxyl groups decreased significantly with increasing reduction temperature over the range of 350-530 degrees C. Two different components show...
Synthesis of ferrocenyl pyrazoles by the reaction of 3-ferrocenylpropynal with hydrazinium salts
Zora, Metin; Odabasoglu, Mustafa; Bueyuekguengoer, Orhan; Turgut, Guenseli (Elsevier BV, 2008-01-01)
Synthesis of ferrocenyl-substituted pyrazoles via the reaction between 3-ferrocenylpropynal and hydrazinium salts is described. Depending upon the substitution pattern of hydrazine derivative, the reaction affords 1-alkyl/aryl-5-ferrocenylpyrazoles and/or 1-alkyl/aryl-3-ferrocenylpyrazoles. Structures of 5-ferrocenyl-1-phenyl-1H-pyrazole, 1-benzyl-5-ferrocenyl-1H-pyrazole and 2-(3-ferrocenylpyrazol-1-yl)ethanol were identified by X-ray crystallography.
Synthesis of ferrocenyl quinolines
Zora, Metin (Elsevier BV, 2008-06-01)
A convenient one-pot synthesis of ferrocenyl-substituted quinolines via a molecular iodine-catalyzed reaction of ferrocenylimines with enolizable aldehydes is reported. First, nucleophilic addition of the in situ generated enol to ferrocenylimine produces beta-anilinopropionaldehyde, which then undergoes intramolecular Friedel-Crafts reaction to give dihydroquinoline derivative. Finally, subsequent dehydration and aerobic oxidation affords ferrocenyl quinolines.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Z. Moradi-Shoeili, M. Zare, M. Bagherzadeh, S. Özkar, and S. Akbayrak, “Synthesis, characterization, and catalytic activity of supported molybdenum Schiff base complex as a magnetically recoverable nanocatalyst in epoxidation reaction,”
JOURNAL OF COORDINATION CHEMISTRY
, pp. 668–677, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/41300.