Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Communities & Collections
Communities & Collections
Loosening and Reorganization of Fluid Phospholipid Bilayers by Chloroform
Download
index.pdf
Date
2009-04-15
Author
Türkyılmaz, Serhan
Chen, Wen-Hua
Mitomo, Hideyuki
Regen, Steven L.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
4
views
6
downloads
The mixing behavior of an exchangeable phospholipid (A) with an exchangeable sterol (B) in host. bilayers made from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) containing varying concentrations of cholesterol has been examined via the nearest-neighbor recognition method. At low sterol concentrations (i.e., 2.5 mol %) the mixing between A and B is close to ideal. Incremental increases in the sterol concentration to 40 mol % led to net increases in the affinity between A and B. Similar mixing experiments that were carried out in the presence of chloroform showed a leveling effect, where moderate sterol-phospholipid affinity was observed in all cases. These results, together with the fact that the number of chloroform molecules that are absorbed per phospholipid is essentially constant and independent of the sterol content, support a model in which chloroform favors solvation of the phospholipids and a common membrane state is produced. Fluorescence measurements and Raman spectra have also shown that chloroform significantly loosens both cholesterol-poor and cholesterol-rich membranes made from DPPC. In a broader context, these results suggest a fundamentally new mechanim of anesthesia, where the anesthetic, by solvating the lipid components, profoundly changes the lateral organization of the lipid framework.
Subject Keywords
Lipid rafts
,
Cholesterol
,
Phase
,
Membranes
URI
https://hdl.handle.net/11511/41788
Journal
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
DOI
https://doi.org/10.1021/ja9011468
Collections
Department of Chemistry, Article