Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Benzodithiophene bearing conjugated polymer-based surface anchoring for sensitive electrochemical glucose detection
Download
index.pdf
Date
2022-10-01
Author
BULUT, Umut
SAYIN, Vuslat Öykü
Cevher, Sevki Can
Çırpan, Ali
Soylemez, Saniye
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
221
views
186
downloads
Cite This
An amino-functionalized, conjugated polymer (P(BDBT)) modified glassy carbon electrode (GCE) was employed as an immobilization platform for glucose oxidase (GOx) enzyme to assemble a novel glucose biosensor. Amino groups available on the polymer backbone served as bioconjugation sites for GOx via glutaraldehyde (GA). The biosensor response to the reduction in oxygen amount because of the enzyme reaction was monitored at –0.7 V potential versus Ag/AgCl. The biosensor displayed a broad linear range between 0.1–1.0 mM glucose with a detection limit of 0.17 mM. The values of the apparent Michaelis-Menten constant (KMapp) and sensitivity were determined as 1.74 mM, and 28.17 μA/(mM·cm2), respectively. GOx immobilized P(BDBT) film displayed high stability, selectivity, and reproducibility. Cyclic voltammetry (CV) and Scanning electron microscopy (SEM) techniques were utilized for the characterization of surface modifications. The fabricated biosensor was adept at determining the amount of glucose in a commercial beverage. The simple electrochemical method for the construction of P(BDBT)/GOx biosensors could pave the way to new perspectives in developing profitable biosensors.
Subject Keywords
molecular engineering
,
amperometric glucose biosensor
,
glucose oxidase
,
enzyme immobilization
,
conjugated polymers
,
CONDUCTING POLYMERS
,
POLYPYRROLE
,
BIOSENSOR
,
OXIDASE
,
FILMS
,
amperometric glucose biosensor
,
conjugated polymers
,
enzyme immobilization
,
glucose oxidase
,
molecular engineering
URI
https://hdl.handle.net/11511/99658
Journal
Express Polymer Letters
DOI
https://doi.org/10.3144/expresspolymlett.2022.74
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection
Gokoglan, Tugba Ceren; SÖYLEMEZ, SANİYE; Kesik, Melis; Toksabay, Sinem; Toppare, Levent Kamil (2015-04-01)
A novel amperometric pyranose oxidase (PyOx) biosensor based on a selenium containing conducting polymer has been developed for the glucose detection. For this purpose, a conducting polymer; poly(4,7-bis(thieno[3,2-b]thiophen-2-yl)benzo[c][1,2,5] selenadiazole) (poly(BSeTT)) was synthesized via electropolymerisation on gold electrode to examine its matrix property for glucose detection. For this purpose, PyOx was used as the model enzyme and immobilised via physical adsorption technique. Amperometric detect...
A novel approach for the fabrication of a flexible glucose biosensor: The combination of vertically aligned CNTs and a conjugated polymer
GOKOGLAN, Tugba Ceren; SOYLEMEZ, Saniye; KESİK, Melis; DOGRU, Itir Bakis; TUREL, Onur; YÜKSEL, Recep; Ünalan, Hüsnü Emrah; Toppare, Levent Kamil (2017-04-01)
A novel flexible glucose biosensor using vertically aligned carbon nanotubes (VACNT) and a conjugated polymer (CP) was fabricated. A scaffold based on VACNT grown on aluminum foil (VACNT-Al foil) with poly (9,9-di-(2-ethylhexyl)-fluorenyl-2,7-diyl)-end capped with 2,5-diphenyl-1,2,4-oxadiazole (PFLO) was used as the immobilization matrix for the glucose biosensor. Glucose oxidase (GOx) was immobilized on a modified indium tin oxide (ITO) coated polyethylene terephthalate (PET) electrode surface. The biosens...
A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing
BULUT, Umut; Oyku Sayin, Vuslat; Altin, Yasin; Can Cevher, Sevki; Çırpan, Ali; Celik Bedeloglu, Ayse; Soylemez, Saniye (2023-01-01)
Herein, a specific and stable biosensor for glucose using a flexible, modified electrode with a carbon nanofiber (CNF) and a novel conjugated polymer including three moieties of benzotriazole, benzodithiophene, and benzenediamine (P-BDT-BTz:BDA) as a platform was designed. For this purpose, polyacrylonitrile (PAN) nanofiber mats were obtained by a solution-based electrospinning method. PAN nanofiber mats were stabilized and carbonized to turn into carbon nanofibers and the sensing platform was formed by com...
Quaternized Polymer-Single-Walled Carbon Nanotube Scaffolds for a Chemiresistive Glucose Sensor
Soylemez, Saniye; Yoon, Bora; Toppare, Levent Kamil; Swager, Timothy M. (2017-08-01)
A chemiresistive glucose sensor based on poly(4-vinylpyridine) (P4VP) and single-walled carbon nano tube (SWCNT) composites was reported. To fabricate this glucose sensor, a glass substrate containing gold electrodes was treated with 3-bromopropyltrichlorosilane to obtain a covalent bonding between the polymer SWCNT composite and the glass substrate. Some of the pyridyl moieties in P4VP react with the surface, and the remainders were quaternized using 2-bromoethanol to achieve highly charged hydrophilic sur...
A conducting polymer and a calixarene derivative A novel surface design for glucose detection
Gökoğlan, Ceren; Söylemez, Saniye; Kesik, Melis; Ünay, Hande; Sayın, Serkan; Çırpan, Ali; Yıldız, Hüseyin Bekir; Toppare, Levent Kamil (null; 2016-07-17)
In this study, a novel amperometric glucose biosensor based on a conducting polymer and a calixarene was developed. Conducting polymer of (2‐(2‐oc‐tyldodecyl)‐4,7‐di(selenoph‐2‐yl)‐2H‐benzo[d][1,2,3]triazole)) (SBTz) was used as the immobilization matrix for biomolecule deposition to achieve an effective surface design to detect glucose. After successful deposition of SBTz on graphite electrode, a newly synthesized calixarene and gold nanoparticle (AuNP) mixture were used for improving biosensor character...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. BULUT, V. Ö. SAYIN, S. C. Cevher, A. Çırpan, and S. Soylemez, “Benzodithiophene bearing conjugated polymer-based surface anchoring for sensitive electrochemical glucose detection,”
Express Polymer Letters
, vol. 16, no. 10, pp. 1012–1021, 2022, Accessed: 00, 2022. [Online]. Available: https://hdl.handle.net/11511/99658.