Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites

2006-09-01
Evis, Zafer
Webster, Thomas J.
To improve the mechanical properties of hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)) for orthopedic applications, numerous investigators have proposed combining HA with high strength materials, specifically zirconia. Despite the fact that, compared to pure HA, it is now well-established that zirconia and HA composites have improved mechanical properties, the cytocompatibility properties of this composite remain largely uninvestigated. For these reasons, the objective of the present in vitro study was to synthesize HA and partially stabilized zirconia composites for osteoblast (bone-forming cell) adhesion assays. Various sintering temperatures and amounts of zirconia in HA composites were used in order to ascertain their influence on osteoblast adhesion. Results demonstrated increased interactions between HA and partially stabilized zirconia, when either higher sintering temperatures (between 900 and 1300 degrees C for 1 h) or higher zirconia contents (between 10 and 40 wt %) were used during material synthesis. More importantly, greater osteoblast adhesion was measured on HA-zirconia composites sintered either at lower temperatures (specifically, 900 degrees C) or with lower amounts of zirconia added to HA composites (specifically, 10 wt %). Results further indicated that when sintered at lower temperatures the composites possessed smaller nanometer grain sizes with increased surface roughness and a more stable HA phase. For these reasons, this study suggests that to optimize osteoblast adhesion on HA and partially stabilized zirconia composites for orthopedic applications, low sintering temperatures and low amounts of zirconia should be used. This suggests that a delicate balance must be reached between increasing mechanical properties of HA without decreasing osteoblast cytocompatibility properties through zirconia addition. (c) 2006 Wiley Periodicals, Inc.
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A

Suggestions

Enzymatically induced mineralization of platelet-rich fibrin
Douglas, Timothy E. L.; Gassling, Volker; Declercq, Heidi A.; Purcz, Nicolai; Pamula, Elzbieta; Haugen, Havard J.; Chasan, Safak; de Mulder, Eric L. W.; Jansen, John A.; Leeuwenburgh, Sander C. G. (Wiley, 2012-05-01)
Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, and subsequently incubated in calcium glycerophosphate (CaGP) solution to induce PRFs mineralization with calcium phosphate (CaP) to improve PRFs suitability as a material for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP material within PRF membranes, as confirmed by SEM, ...
Microstructural, mechanical, and osteocompatibility properties of Mg2+/F--doped nanophase hydroxyapatite
Sun, Zehra Pinar; Ercan, Batur; Evis, Zafer; Webster, Thomas J. (Wiley, 2010-09-01)
Pure as well as Mg2+- and F--doped nanophase (i.e., grain sizes in the nanometer regime in at least one dimension) hydroxyapatite (HA) samples were synthesized by a precipitation method followed by sintering at 1100 degrees C for 1 h to determine their microstructural, mechanical, and osteoblast (bone-forming cell) adhesion properties pertinent for orthopedic applications. Different amounts of Mg2+ and F- ions (specifically from 0 to 7.5 mol %) were doped into the HA samples. X-ray diffraction was used to i...
Fabrication and cellular interactions of nanoporous tantalum oxide
Uslu, Ece; Garipcan, Bora; Ercan, Batur (Wiley, 2020-10-01)
Tantalum possesses remarkable chemical and mechanical properties, and thus it is considered to be one of the next generation implant materials. However, the biological properties of tantalum remain to be improved for its use in tissue engineering applications. To enhance its cellular interactions, implants made of tantalum could be modified to obtain nanofeatured surfaces via the electrochemical anodization process. In this study, anodization parameters were adjusted to obtain a nanoporous surface morpholog...
Enhanced methylene blue removal efficiency of TiO2 embedded porous glass
Ertus, E. Burak; Vakifahmetoglu, Cekdar; Öztürk, Abdullah (Elsevier BV, 2021-02-01)
A porous glass (PG) embedded with titanium dioxide (TiO2) was produced via impregnation of the PG with Titanium (IV) Isopropoxide solution followed by crystallization. N-2 sorption analyses revealed that the specific surface area (SSA) and total pore volume of the PG reached to 358 m(2)/g and 0.370 cm(3)/g, respectively. The adsorption capacity of methylene blue (MB) for the glasses was measured in the dark, instead the photocatalytic MB removal efficiency was evaluated by the degradation of MB under UV lig...
Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering
Türkkan, Sibel; Atila, Deniz; Akdağ, Akın; Tezcaner, Ayşen (Wiley, 2018-10-01)
In this study, novel porous three-dimensional (3D) scaffolds from silk fibroin (SF) and functionalized (amidated and oxidized) citrus pectin (PEC) were developed for skin tissue engineering applications. Crosslinking was achieved by Schiff's reaction in borax presence as crosslinking coordinating agent and CaCl2 addition. After freeze-drying and methanol treatment, plasma treatment (10 W, 3 min) was applied to remove surface skin layer formed on scaffolds. 3D matrices had high porosity (83%) and interconnec...
Citation Formats
Z. Evis and T. J. Webster, “Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, pp. 500–507, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42517.