Enzymatically induced mineralization of platelet-rich fibrin

Douglas, Timothy E. L.
Gassling, Volker
Declercq, Heidi A.
Purcz, Nicolai
Pamula, Elzbieta
Haugen, Havard J.
Chasan, Safak
de Mulder, Eric L. W.
Jansen, John A.
Leeuwenburgh, Sander C. G.
Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were functionalized by incorporation of alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, and subsequently incubated in calcium glycerophosphate (CaGP) solution to induce PRFs mineralization with calcium phosphate (CaP) to improve PRFs suitability as a material for bone replacement. Incorporated ALP retained its bioactivity and induced formation of CaP material within PRF membranes, as confirmed by SEM, EDS, FTIR, and von Kossa staining. The mass percentage attributable to CaP was quantified by lyophilization and measurement of the remaining mass fraction as well as by TGA. Cytocompatibility tests (LDH, MTT, and WST) with SAOS-2 cells showed that mineralized PRF did not release substances detrimental to cell vitality. Live/dead staining and SEM showed that mineralized PRF was colonized by cells. The results show that hydrogel biomaterials such as PRF can be mineralized through functionalization with ALP. (C) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 2012.


Enzymatic Mineralization of Hydrogels for Bone Tissue Engineering by Incorporation of Alkaline Phosphatase
Douglas, Timothy E. L.; Messersmith, Philip B.; Chasan, Safak; Mikos, Antonios G.; de Mulder, Eric L. W.; Dickson, Glenn; Schaubroeck, David; Balcaen, Lieve; Vanhaecke, Frank; Dubruel, Peter; Jansen, John A.; Leeuwenburgh, Sander C. G. (Wiley, 2012-08-01)
Alkaline phosphatase (ALP), an enzyme involved in mineralization of bone, is incorporated into three hydrogel biomaterials to induce their mineralization with calcium phosphate (CaP). These are collagen type I, a mussel-protein-inspired adhesive consisting of PEG substituted with catechol groups, cPEG, and the PEG/fumaric acid copolymer OPF. After incubation in Ca-GP solution, FTIR, EDS, SEM, XRD, SAED, ICP-OES, and von Kossa staining confirm CaP formation. The amount of mineral formed decreases in the orde...
Nanostructured anti-bacterial poly-lactic-co-glycolic acid films for skin tissue engineering applications
Karahaliloglu, Zeynep; Ercan, Batur; Chung, Stanley; Taylor, Erik; DENKBAŞ, EMİR BAKİ; Webster, Thomas J. (Wiley, 2014-12-01)
Major issues faced with the use of today's skin grafts are infection, scar tissue formation, insufficient keratinocyte (or skin producing cells) proliferation and high production costs. To overcome these limitations, we propose here for the first time, a nanofeatured poly(lactide-co-glycolide) (PLGA) membrane as a next generation antibacterial skin graft material. An alkaline surface treatment method was used to create random nanofeatures on PLGA membranes where sodium hydroxide (NaOH) concentration and exp...
Increased osteoblast adhesion on nanograined hydroxyapatite and partially stabilized zirconia composites
Evis, Zafer; Webster, Thomas J. (Wiley, 2006-09-01)
To improve the mechanical properties of hydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)) for orthopedic applications, numerous investigators have proposed combining HA with high strength materials, specifically zirconia. Despite the fact that, compared to pure HA, it is now well-established that zirconia and HA composites have improved mechanical properties, the cytocompatibility properties of this composite remain largely uninvestigated. For these reasons, the objective of the present in vitro study was to synthe...
Synthesis of calcium carbonate microspheres via inert gas bubbling for orthopedic applications
Oral, Cagatay M.; Caliskan, Arda; Goctu, Yagmur; KAPUSUZ, DERYA; Ercan, Batur (Elsevier BV, 2020-02-15)
Calcium carbonate (CaCO3) microspheres consisting of vaterite polymorph have been widely used in biomedical applications. Specifically, vaterite microspheres having hollow cores showed significant potential in drug delivery, however the spontaneous transformation of vaterite to other polymorphs in aqueous environments reduced its controlled in vivo release capability. In this work, calcite and aragonite microspheres having hollow/porous inner cores were synthesized -for the first time-using sodium dodecyl s...
Covalent immobilization of chloroperoxidase onto magnetic beads: Catalytic properties and stability
Bayramoglu, Guelay; Kiralp, Senem; Yilmaz, Meltem; Toppare, Levent Kamil; Arica, M. Yakup (Elsevier BV, 2008-02-15)
Amino groups containing magnetic beads were used in covalent immobilization of the enzyme "chloroperoxidase (CPO)" which is one of a few enzymes that can catalyse the peroxide dependent oxidation of a wide spectrum of organic and inorganic compounds. The magnetic poly(glycidylmethacrylate-methylmethacrylate-etbyleneglycol dimethacrylate), magnetic p(GMA-MMA-EGDMA) beads were prepared via suspension polymerization in the presence of ferric ions. The magnetic beads were characterized with scanning electron mi...
Citation Formats
T. E. L. Douglas et al., “Enzymatically induced mineralization of platelet-rich fibrin,” JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, pp. 1335–1346, 2012, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/68549.