Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
LIQUEFACTION OF NIGDE-ULUKISLA OIL SHALE: THE EFFECTS OF PROCESS PARAMETERS ON THE CONVERSION OF LIQUEFACTION PRODUCTS
Download
index.pdf
Date
2017-01-01
Author
KARTAL, ÖZLEM ESEN
Akın, Serhat
Hascakir, Berna
KARACA, HÜSEYİN
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
2
views
3
downloads
In this paper, the direct liquefaction of Turkish Nigde-Ulukisla oil shale in noncatalytic and catalytic conditions was studied. The effects of pressure, tetralin/oil shale ratio, catalyst type and concentration, reaction time and temperature and oil shale/waste paper ratio on the process were investigated. It was found that tetralin/oil shale ratio had no considerable effect on the total and liquefaction products conversions under the noncatalytic conditions. Fe2O3, MoO3, Mo(CO)(6), Cr(CO)(6) and zeolite were used as catalysts in catalytic liquefaction. The highest total and liquefaction products conversions were obtained using MoO3 as catalyst at a concentration of 9% by weight. Reaction temperature of 400 degrees C and reaction time of 90 minutes were chosen according to obtained liquefaction results. Co-liquefaction experiments were performed using waste paper. Both the total and oil + gas conversions were increased to a considerable extent by the application of the co-liquefaction process. According to gas chromatographic-mass spectrometric (GC-MS) analysis, the liquid product from the liquefaction process of oil shale under catalytic conditions of experiment 22 consisted mainly of naphthalene and its derivatives and polycyclic hydrocarbon such as indene and its derivatives.
Subject Keywords
Oil Shale Liquefaction
,
Total Conversion
,
Liquefaction Products
,
Nigde-Ulukisla
URI
https://hdl.handle.net/11511/42566
Journal
OIL SHALE
DOI
https://doi.org/10.3176/oil.2017.4.03
Collections
Department of Petroleum and Natural Gas Engineering, Article