Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Collagen/PEO/gold nanofibrous matrices for skin tissue engineering
Date
2016-01-01
Author
Akturk, Omer
Keskin, Dilek
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
241
views
0
downloads
Cite This
As a novel approach in skin tissue engineering, gold nanoparticles (AuNPs) were synthesized and incorporated at different concentrations into collagen/PEO nanofibrous matrices in this study. The group containing 14.27 ppm AuNPs (CM-Au) had the best nanofibrous morphology. CM-Au was cross-linked with glutaraldehyde vapor (CM-AuX). All groups were disrupted in collagenase in 2 h, but cross-linked groups and Matriderm (R) resisted hydrolytic degradation for 7 and 14 days, respectively. Due to its small pores and dense structure, lower water swelling results (7.26 +/- 2.62 g/g) were obtained for CM-AuX than Matriderm (17.51 +/- 1.97 g/g). CM-Au and Matriderm had statistically similar tensile strength and elastic modulus, but elongation at break of CM-Au (over 100%) was significantly better than that of Matriderm. After cross-linking, tensile strength and elastic modulus of collagen matrix was further improved. AuNPs (37 and 42 nm) seemed to be nontoxic on 3T3 fibroblasts and keratinocytes for different time periods. CM-AuX scaffold extracts were also nontoxic for 3T3 fibroblasts and keratinocytes. The L929 cell attachment and proliferation on CM-AuX were comparable with Matriderm, indicating good in vitro biocompatibility. As a whole, collagen matrices incorporated with AuNPs are potential biomaterial candidates for skin tissue engineering.
Subject Keywords
Genetics
,
Cell Biology
,
Physiology
,
Molecular Biology
,
General Agricultural and Biological Sciences
,
Microbiology
URI
https://hdl.handle.net/11511/43039
Journal
TURKISH JOURNAL OF BIOLOGY
DOI
https://doi.org/10.3906/biy-1502-49
Collections
Department of Engineering Sciences, Article
Suggestions
OpenMETU
Core
In vitro evaluation of PLLA/PBS sponges as a promising biodegradable scaffold for neural tissue engineering
Kanneci Altinisik, Irem Ayse; Kök, Fatma Neşe; Yucel, Deniz; KÖSE, GAMZE (The Scientific and Technological Research Council of Turkey, 2017-01-01)
In tissue engineering, the use of poly-L-lactic acid (PLLA)/polybutylene succinate (PBS) blend for the construction of scaffold is very limited. Moreover, polymeric sponges fabricated from PLLA/PBS have not been studied for neural tissue engineering. In the present study, the potential of the utility of PLLA/PBS polymeric sponges seeded with Schwann cells was investigated. PLLA and PBS were blended in order to increase the processability and tune the crystallinity, porosity, and degradation rate of the resu...
Photovoltaic Properties of Poly(Triphenylamine-Thiazolo[5,4-d] Thiazole) Copolymer Dye in Bulk-Hetorojunction Organic Solar Cells
Olgun, Ugursoy; Gulfen, Mustafa; HIZALAN, Gonul; Çırpan, Ali; Toppare, Levent Kamil (2017-04-01)
In this study, the photovoltaic properties of poly(triphenylamine-thiazolo[5,4-d]thiazole) alternating copolymer dye in bulk heterojunction polymer solar cells were examined. The copolymer is a red colored dye material with high thermal stability, good solubility and low-band gap energy. The band gap energy of the polymer was determined as 1.36 eV. The conductivity of the polymer thin film was measured as 1.5x10(-5) S/cm. The polymer solar cells were fabricated using the different ratios of the blends of th...
Collagen-based scaffolds for cornea tissue engineering
Vrana, Nihal Engin; Hasırcı, Vasıf Nejat; Department of Biotechnology (2006)
In this study, collagen based scaffolds were prepared for cornea tissue engineering. Three different cell carriers (rat tail collagen foam, insoluble collagen foam and patterned collagen film) were produced using two different collagen sources. Scaffolds were designed to mimic the unique topographical features of the corneal stroma. A novel crosslinking method was developed to achieve constant foam thickness. All scaffolds were tested with the primary cells of the native corneal stroma, human keratocytes. A...
Vitamin E Decreases the Order of the Phospholipid Model Membranes in the Gel Phase: An FTIR Study
Severcan, Feride (Portland Press Ltd., 1997-4-1)
The effect of α-tocopherol on the frequency of the CH2 stretching bands of infrared spectra of dipalmitoylphosphotidylcholine multibilayers has been investigated, both in H2O and 2H2O buffer, to determine the reason for the discrepancy in the literature between the results of different spectroscopic techniques relating to the effect of α-tocopherol on membrane order in the gel phase. In contrast to previous FTIR studies, the present FTIR results indicate that αT increases the frequencies of the CH2 stretchi...
Structural properties of an engineered outer membrane protein G mutant, OmpG-16SL, investigated with infrared spectroscopy
Yilmaz, Irem; Yildiz, Ozkan; KORKMAZ ÖZKAN, FİLİZ (Informa UK Limited, 2019-05-31)
The structural and functional differences between wild type (WT) outer membrane protein G and its two mutants are investigated with Fourier transform infrared spectroscopy. Both mutants have a long extension to the primary sequence to increase the number of beta-strands from 14 (wild type) to 16 in an attempt to enlarge the pore diameter. The comparison among proteins is made in terms of pH-dependent conformational changes and thermal stability. Results show that all proteins respond to pH change but at dif...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Akturk and D. Keskin, “Collagen/PEO/gold nanofibrous matrices for skin tissue engineering,”
TURKISH JOURNAL OF BIOLOGY
, pp. 380–398, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43039.