Effect of a temperature cycle on a rotating elastic-plastic shaft

2008-01-01
ARSLAN, ERAY
Mack, W.
Eraslan, Ahmet Nedim
The stress distribution in a rotating solid shaft with temperature dependent yield stress subject to a temperature cycle is investigated. It is presumed that the shaft is in a state of generalized plane strain and obeys Tresca's yield criterion and the flow rule associated with it. Even in an initially purely elastic shaft two plastic regions with different forms of the yield condition may emerge simultaneously at the centre. However, the expansion of the plastic zone ceases soon thereafter, and an unloaded region spreads into the plastic core; the latter process is treated in an approximate way. It is shown that the stress distribution is altered significantly by the temperature cycle, hence also leading to non-zero residual stresses at stand-still.
ACTA MECHANICA

Suggestions

Effect of a temperature cycle on a rotating elastic-plastic shaft
Arslan, Eray; Eraslan, Ahmet Nedim; Department of Engineering Sciences (2010)
The stress distribution in a rotating solid shaft with temperature dependent yield stress subject to a temperature cycle is investigated. It is presumed that the shaft is in a state of generalized plane strain and obeys Tresca’s yield criterion and the flow rule associated with it. By the temperature cycle it is meant that the surface temperature of the shaft is increased to a limiting value, it is held at this temperature for a while, and then slowly decreased at the same rate to the reference temperature....
The strain hardening rotating hollow shaft subject to a positive temperature gradient
Eraslan, Ahmet Nedim; Mack, W. (Springer Science and Business Media LLC, 2007-11-01)
Based on Tresca's yield criterion and the flow rule associated with it, the distribution of stress, strain and displacement in a linearly strain hardening elastic-plastic hollow shaft subject to a positive radial temperature gradient and monotonously increasing angular speed is investigated. Presupposing circular symmetry and plane strain conditions, the problem is accessible to an analytical treatment. It is found that - depending on the temperature difference between the outer and the inner surface - qual...
ELASTIC-PLASTIC DEFORMATION OF A CENTRALLY HEATED CYLINDER
ORCAN, Y; GAMER, U (Springer Science and Business Media LLC, 1991-01-01)
Subject of the investigation is the deformation of a perfectly plastic cylinder with uniform temperature inside its cylindrical core and zero surface temperature. The calculation is based on Tresca's yield condition and the flow rule associated to it. For small radii of the hot core. a plastic region appears at the center and expands towards the surface of the cylinder with increasing core temperature. The other possibility is that, depending on the core radius, two plastic regions form one after the other ...
Effect of surface roughness in microchannels on heat transfer
Turgay, Metin Bilgehan; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2008)
In this study, effect of surface roughness on convective heat transfer and fluid flow in two dimensional parallel plate microchannels is analyzed by numerically. For this purpose, single-phase, developing, laminar fluid flow at steady state and in the slip flow regime is considered. The continuity, momentum, and energy equations for Newtonian fluids are solved numerically for constant wall temperature boundary condition. Slip velocity and temperature jump at wall boundaries are imposed to observe the rarefa...
Analysis of single phase convective heat transfer in microchannels with variable thermal conductivity and variable viscosity
Gözükara, Arif Cem; Güvenç Yazıcıoğlu, Almıla; Department of Mechanical Engineering (2010)
In this study simultaneously developing single phase, laminar and incompressible flow in a micro gap between parallel plates is numerically analyzed by including the effect of variation in thermal conductivity and viscosity with temperature. Variable property solutions for continuity, momentum and energy equations are performed in a coupled manner, for air as a Newtonian fluid. In these analyses the rarefaction effect, which is important for the slip flow regime, is taken into account by imposing slip veloc...
Citation Formats
E. ARSLAN, W. Mack, and A. N. Eraslan, “Effect of a temperature cycle on a rotating elastic-plastic shaft,” ACTA MECHANICA, pp. 129–140, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43121.