Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Optimizing LED properties of 2,7-Bis(phenylethenyl)fluorenes
Date
2006-01-24
Author
RATHNAYAKE, Hemali P.
Çırpan, Ali
LAHTI, Paul M.
KARASZ, Frank E.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
115
views
0
downloads
Cite This
(E,E)-2,7-Bis(3,4,5-trimethoxyphenylethenyl)fluorene 1, and a segmented copolymer 2 composed of the same chromophore alternated with nonconjugated 1,6-hexanediyl (alt-oligo(2,6-dimethoxylphenylene-4-vinylene-[9,9-diethylfluoren-2-yl-7-vinylene]-3,5-dimethoxy-phenylene-4-[1,6-hexanedioxyl]) were synthesized. They have solution photoluminescence emission maxima at 420-460 nm, with quantum efficiencies of 0.93 and 0.68, respectively, in chloroform. Electroluminescent spectra in an LED configuration ITO/PEDOT-PSS/(1 or 2)/Ca-Al both showed maxima at 470-480 nm, although the spectrum from 2 was significantly broader. The luminance of LEDs with 1 was over 10-fold higher than those with copolymer 2, 0.515 versus 0.040 cd/A, with turn-on voltages of 3 and 5 V, respectively. The crystallography of I showed no chromophore pi-stacking; this absence should limit tendencies for emission wavelength shifts due to solid state interchromophore interactions. When 1 was heated in air before incorporation into an LED emissive layer, a 540 nm emission component was produced, which did not occur if 1 was not heated before use. Emissive layers of 1 with PMMA gave stronger luminance than either neat 1 or 2, with only a modest increase in turn-on voltage. A 10% (w/w) I:PMMA based LED emission showed a maximum at 444 nm (blue emission with CIE color coefficients of (0.153, 0.312)), with a luminance efficiency of 4.5 cd/A and a turn on voltage of 4.5 V.
Subject Keywords
Materials Chemistry
,
General Chemistry
,
General Chemical Engineering
URI
https://hdl.handle.net/11511/43777
Journal
Chemistry of Materials
DOI
https://doi.org/10.1021/cm052144o
Collections
Department of Chemistry, Article
Suggestions
OpenMETU
Core
Proquinoidal-Conjugated Polymer as an Effective Strategy for the Enhancement of Electrical Conductivity and Thermoelectric Properties
Tam, Teck Lip Dexter; Ng, Chee Koon; Lim, Siew Lay; Yıldırım, Erol; Ko, Jieun; Leong, Wei Lin; Yang, Shuo-Wang; Xu, Jianwei (American Chemical Society (ACS), 2019-10-22)
P-doping of conjugated polymers requires electron transfer from the conjugated polymer to the p-dopant. This implies that the highest occupied molecular orbital (HOMO) of the conjugated polymer has to be higher than the lowest unoccupied molecular orbital (LUMO) of the p-dopant. Although commonly used p-dopants such as 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) have a low LUMO of -5.24 eV, most conjugated polymers used in high-performance field-effect transistors are donor- acceptor-type ...
Electrochemical Synthesis of a Water-Soluble and Self-Doped Polythiophene Derivative
Turac, Ersen; Varol, Ramazan; Ak, Metin; Sahmetlioglu, Ertugrul; Toppare, Levent Kamil (Informa UK Limited, 2008-01-01)
A new monomer, 4-(thiophen-3-yl methyleneamino)benzene sulfonate) (ThSA), was synthesized and characterized. Electrochemical polymerization of ThSA yields a water-soluble and self-doped polymer (PThSA). This polymer was characterized by FT-IR, NMR, DSC, XRD and conductivity measurements. (C) Koninklijke Brill NV, Leiden, 2008
Immobilization of invertase and glucose oxidase in conducting H-type polysiloxane/polypyrrole block copolymers
Gursel, A; Alkan, S; Toppare, Levent Kamil; Yagci, Y (Elsevier BV, 2003-01-01)
In this study, immobilizations of enzymes, invertase and glucose oxidase, were achieved in conducting copolymers of N-pyrrolyl terminated polydimethylsiloxane/polypyrrole (PDMS/PPy) matrices via electrochemical polymerization. The kinetic parameters, v(max) (maximum reaction rate) and K-m (substrate affinity), of both free and immobilized enzymes were determined. The effect of supporting electrolytes, p-toluene sulfonic acid and sodium dodecyl sulfate, on enzyme activity and film morphologies was examined. ...
Aryl butenoic acid derivatives as a new class of histone deacetylase inhibitors: synthesis, in vitro evaluation, and molecular docking studies
Esiyok, Peruze Ayhan; Seven, Ozlem; Eymur, Guluzar; Tatar, Gamze Bora; DAYANGAÇ ERDEN, DİDEM; YELEKÇİ, Kemal; YURTER, HAYAT; Demir, Ayhan Sıtkı (The Scientific and Technological Research Council of Turkey, 2014-01-01)
New aryl butenoic acid derivatives have been synthesized by combining hydroxy- or methoxy-substituted phenyl rings as the capping group, with a double bond in the short linker as well as metal binding groups, enoic ester, and salts bearing either methyl or morpholine. These compounds have been shown to possess promising histone deacetylase inhibition activities via in vitro fluorometric assay and molecular docking studies.
New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward green polymeric materials
Durmus, Asuman; Günbaş, Emrullah Görkem; Toppare, Levent Kamil (American Chemical Society (ACS), 2007-12-11)
Two new highly stable electrochromic polymers, poly(5,8-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2,3-di(thiophen-2-yl)quinoxaline) (PDETQ) and poly (5,8-bis(2,3 -dihydrothieno[3,4-b][ 1,4]dioxin-5yl)quinoxaline) (PDEQ) were synthesized, and their potential use as neutral state green polymeric materials was investigated. Spectroelectrochemistry showed that both polymers reveal two distinct absorption bands as expected for this type of donor-acceptor polymer, at 410 and 660 nm for PDEQ and 405 and 780 nm...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. P. RATHNAYAKE, A. Çırpan, P. M. LAHTI, and F. E. KARASZ, “Optimizing LED properties of 2,7-Bis(phenylethenyl)fluorenes,”
Chemistry of Materials
, pp. 560–566, 2006, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/43777.