Assessment of the impacts of hyperlipidemia on brain and modulation of perk pathway against hyperlipidemia- induced synaptic impairment on hippocampus

Aşkın, Bilge
Hyperlipidemia is characterized by elevated total cholesterol levels in the circulation, and it is often associated with co-occurrence of neuronal dysfunction and subsequent neurodegeneration. Hyperlipidemia-induced inflammation, synaptic damage and neuronal loss in hippocampus as well as in other regions of the brain consequently leads to cognitive decline. Due to its role in protein translation and cell fate determination, PKR-like endoplasmic reticulum kinase (PERK) arm of the Endoplasmic Reticulum (ER) stress is likely to be involved in hyperlipidemia-induced neurodegeneration. Therefore, attenuation of PERK pathway would provide a neuroprotective effect against the negative effects of hyperlipidemia. The first half of the study was aimed to examine hyperlipidemia-induced inflammatory and synaptic changes in the cortex and hippocampus and the involvement of PERK pathway in hyperlipidemia-induced changes. The second half of the study was aimed to assess the impacts of PERK pathway modulation using Sephin1 on hyperlipidemia-induced synaptic impairment in hippocampus. Our results showed that hyperlipidemia elevated the stress status of the cortex and potentially impaired synaptic integrity by decreasing synaptic protein levels. In the cortex, decreased synaptic protein levels coincided with elevated astrogliosis and pro- inflammatory cytokine levels. Unlike cortex, hippocampus was not affected by the early effects of hyperlipidemia even though astrogliosis level was markedly increased. Increased astrogliosis may provide a neuroprotective activity against the early effects of hyperlipidemia in hippocampus due to its privileged involvement in neurogenesis. Sephin1 was not an effective therapeutic approach to prevent hyperlipidemia-induced synaptic protein loss seen in hippocampus since stress response was not yet triggered in hippocampus.


The effects of high cholesterol/high fat diet on endoplasmic reticulum stress and neuronal dysfunction in the hippocampus and cerebral cortex of APOE-/- MICE
Mengi, Naz; Yanık, Tülin; Department of Molecular Biology and Genetics (2019)
Hyperlipidemia is an obesity-associated lipid metabolism disorder with high serum total cholesterol (TC) levels and is known to be a risk factor for neurodegenerative diseases. High-fat diet (HFD) induced elevated inflammation levels accompanied by increased levels of apoptosis markers and decreased levels of synaptic proteins in the hippocampus points out a possible neuronal loss. Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway is activated by endoplasmic reticulum (ER) stress. The acti...
Investigation of fluid structure interaction in cardiovascular system from diagnostic and pathological perspective
Salman, Hüseyin Enes; Yazıcıoğlu, Yiğit; Sert, Cüneyt; Department of Mechanical Engineering (2012)
Atherosclerosis is a disease of the cardiovascular system where a stenosis may develop in an artery which is an abnormal narrowing in the blood vessel that adversely affects the blood flow. Due to the constriction of the blood vessel, the flow is disturbed, forming a jet and recirculation downstream of the stenosis. Dynamic pressure fluctuations on the inner wall of the blood vessel leads to the vibration of the vessel structure and acoustic energy is propagated through the surrounding tissue that can be de...
Large eddy simulation of pressure fluctuations inside stenosed blood vessels towards noninvasive diagnosis of atherosclerosis
Özden, Kamil; Sert, Cüneyt; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2018)
Atherosclerosis is a cardiovascular disease, in which plaque builds up inside a blood vessel, narrowing it down and forming a stenosis that adversely affects the flow. Because of the stenosis, turbulent flow occurs at the post-stenotic region, which causespressure fluctuations on the vessel wall. The resulting murmurpropogates through the surrounding tissue and reaches the skin surface. These sounds emitted from the stenosed vessels are evaluated as a sign of stenosis. In this study, large eddy simulations ...
Analyzing the expression patterns of vitamin D metabolizing CYP27B1 and CYP24A1 in brain tissue of vitamin D treated mice with Multiple Sclerosis (MS)
Özdoğan, Dilara; Adalı, Orhan; Evin, Emre; Department of Molecular Biology and Genetics (2022-8)
The etiopathogenesis of Multiple Sclerosis (MS), an inflammatory demyelinating autoimmune disease of the central nervous system, is still unknown. MS is a complex, recurring, and frequently progressing condition. There is a hypothesis that MS is adversely associated with the length and intensity of sunlight exposure and vitamin D concentrations since MS frequency rises with increasing latitude. A female C57BL/6 mouse model for autoimmune encephalomyelitis (EAE) was used in this investigation to examine the ...
Generation and characterization of human induced pluripotent stem cell line METUi001-A from a 25-year-old male patient with relapsing-remitting multiple sclerosis
Koc, Dilara; Begentaş, Onur Can; Yurtogullari, Sukran; Temel, Musa; Akcali, Kamil Can; Demirkaya, Seref; Kiriş, Erkan (2021-05-01)
Multiple sclerosis is a chronic disease characterized by inflammation, demyelination, and axonal damage in the central nervous system. Here, we established an induced pluripotent stem cell (iPSC) line METUi001-A from the peripheral blood mononuclear cells of a 25-year-old male individual with clinically diagnosed Relapsing-Remitting Multiple Sclerosis (RRMS) using the integration-free Sendai reprogramming method. We demonstrated that the iPSCs are free of exogenous Sendai reprogramming vectors, have a norma...
Citation Formats
B. Aşkın, “Assessment of the impacts of hyperlipidemia on brain and modulation of perk pathway against hyperlipidemia- induced synaptic impairment on hippocampus,” Thesis (M.S.) -- Graduate School of Natural and Applied Sciences. Molecular Biology and Genetics, Middle East Technical University, 2019.