Emission tuning study of RGB blends. Interaction of two EL polymers and a red dye

2010-03-01
de Deus, Jeferson Ferreira
Çırpan, Ali
KARASZ, Frank
AKCELRUD, Leni
A study of light emission in photo- and electroluminescence in blends composed of a blue and a green emitting polymers with a red dye was performed. To gain information about the tunability of the RGB mixture, the blends varied in composition. The polymers were poly(2,7-9,9′-dihexylfluorenediyl) (blue), poly(9,9-di-hexylfluorenediyl divinylene-alt-1,4-phenylenevinylene) (green) and the dye was 4-(dicyanomethylene)-2-methyl-6-(dimethylaminostyryl)-4H-pyrane (red). It was verified that in photoluminescence Forster type energy transfer plays the main role in the emission. In solution a large concentration of the acceptors is needed to attain the transfer radii, whereas in the solid state, the transfer is very sensitive to small variations in the acceptor content, with large changes in emission spectra. The band gaps of the components allowed a cascade energy transfer mechanism. In electroluminescence, apart from the energy transfer mechanism, an important role is played by the trapping of charge carriers, resulting in significant differences between the PL and EL spectra.
Current Applied Physics

Suggestions

Optical absorption and reflection studies of Tl4InGa3S8 layered single crystals
Goksen, K.; Hasanlı, Nızamı; Ozkan, H. (Institute of Physics, Polish Academy of Sciences, 2007-07-01)
The optical properties of Tl4InGa3S8 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength region between 400 and 1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.40 and 2.61 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed the rate of change of the indirect band gap with temperature as g...
Temperature-tuned band gap energy and oscillator parameters of Tl2InGaSe4 semiconducting layered single crystals
Hasanlı, Nızamı (Wiley, 2009-03-01)
The optical properties of Tl2InGaSe4 layered single crystals have been studied through the transmission and reflection measurements in the wavelength range of 500-1100 nm. The analysis of room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 1.86 and 2.05 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma = -4...
Dispersive optical constants and temperature tuned band gap energy of Tl2InGaS4 layered crystals
Goksen, K.; Hasanlı, Nızamı; Ozkan, H. (IOP Publishing, 2007-06-27)
The optical properties of Tl2InGaS4 layered single crystals have been studied by means of transmission and reflection measurements in the wavelength range of 400-1100 nm. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.35 and 2.54 eV, respectively. Transmission measurements carried out in the temperature range of 10-300 K revealed that the rate of change of the indirect band gap with temperature is gamma =...
Direct magnetic imaging of ferromagnetic domain structures by room temperature scanning hall probe microscopy using a bismuth micro-hall probe
SANDHU, ADARSH; MASUDA, HİROSHİ; Oral, Ahmet; BENDİNG, SİMON J (IOP Publishing, 2001-05-15)
A bismuth micro-Hall probe sensor with an integrated scanning tunnelling microscope tip was incorporated into a room temperature scanning Hall probe microscope system and successfully used for the direct magnetic imaging of microscopic domains of low coercivity perpendicular garnet thin films and demagnetized strontium ferrite permanent magnets. At a driving current of 800 muA, the Hall coefficient, magnetic field sensitivity and spatial resolution of the Bi probe were 3.3 x 10(-4) Omega /G, 0.38 G/root Hz ...
Interfacial and structural properties of sputtered HfO2 layers
AYGÜN ÖZYÜZER, GÜLNUR; Yıldız, İlker (AIP Publishing, 2009-07-01)
Magnetron sputtered HfO2 layers formed on a heated Si substrate were studied by spectroscopic ellipsometer (SE), x-ray diffraction (XRD), Fourier transform infrared (FTIR), and x-ray photoelectron spectroscopy (XPS) depth profiling techniques. The results show that the formation of a SiOx suboxide layer at the HfO2/Si interface is unavoidable. The HfO2 thickness and suboxide formation are highly affected by the growth parameters such as sputtering power, O-2/Ar gas ratio during sputtering, sputtering time, ...
Citation Formats
J. F. de Deus, A. Çırpan, F. KARASZ, and L. AKCELRUD, “Emission tuning study of RGB blends. Interaction of two EL polymers and a red dye,” Current Applied Physics, pp. 365–369, 2010, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/44774.