High speed QWIP FPAs on InP substrates

2011-05-01
Eker, S. U.
Arslan, Y.
Beşikci, Cengiz
Quantum well infrared photodetector (QWIP) technology has allowed the realization of low cost staring focal plane arrays (FPAs). However, AlGaAs/(In)GaAs QWIP FPAs suffer from low quantum and conversion efficiencies under high frame rate and/or low background conditions.
INFRARED PHYSICS & TECHNOLOGY

Suggestions

High-x InP/InxGa1-xAs quantum well infrared photodetector
Beşikci, Cengiz (Elsevier BV, 2018-12-01)
Quantum well infrared photodetector (QWIP) technology is still the only thermal imaging sensor technology providing excellent pixel operability, uniformity and stability together with low production cost and insignificant 1/f noise. The main bottleneck of the standard QWIP technology is the low quantum efficiency and device gain inhibiting the utilization of the sensor for low background and/or high frame rate applications. This manuscript reports unusually high quantum efficiency observed in mid-wavelength...
Assessment of large format InP/InGaAs quantum well infrared photodetector focal plane array
Ozer, S; Cellek, OO; Beşikci, Cengiz (Elsevier BV, 2005-10-01)
We report the fabrication and characteristics of large format (640 x 512) InP/In0.53Ga0.47As long wavelength infrared (LWIR) quantum well infrared photodetector (QWIP) focal plane array (FPA). The FPA, which is hybridized to a read-out integrated circuit having a charge capacity of 1.1 x 10(7) electrons, yielded a mean noise equivalent temperature difference (NETD) of similar to 40 mK at a cold finger temperature as high as 77 K. The performance of the FPA, being comparable to that of AlGaAs/GaAs QWIP FPAs,...
High Conversion Efficiency InP/InGaAs Strained Quantum Well Infrared Photodetector Focal Plane Array With 9.7 mu m Cut-Off for High-Speed Thermal Imaging
Eker, Suleyman Umut; Arslan, Yetkin; Onuk, Ahmet Emre; Beşikci, Cengiz (Institute of Electrical and Electronics Engineers (IEEE), 2010-02-01)
InP/InGaAs material system is an alternative to AlGaAs/GaAs for long wavelength quantum well infrared photodetectors (QWIPs). We demonstrate a large format (640 x 512) QWIP focal plane array (FPA) constructed with the strained InP/InGaAs material system. The strain introduced to the structure through utilization of In0.48Ga0.52As (instead of In0.53Ga0.47As) as the quantum well material shifts the cut-off wavelength from similar to 8.5 to 9.7 mu m. The FPA fabricated with the 40-well epilayer structure yield...
High responsivity InP-InGaAs quantum-well infrared photodetectors: Characteristics and focal plane array performance
Cellek, OO; Ozer, S; Beşikci, Cengiz (Institute of Electrical and Electronics Engineers (IEEE), 2005-07-01)
We report the detailed characteristics of long-wavelength infrared InP-In0.53Ga0.47As quantum-well infrared photodetectors (QWIPs) and 640 x 512 focal plane array (FPA) grown by molecular beam epitaxy. For reliable assessment of the detector performance, characterization was performed on test detectors of the same size and structure with the FPA pixels. Al0.27Ga0.73As-GaAs QWIPs with similar spectral response (lambda(p) = similar to 7.8 mu m) were also fabricated and characterized for comparison. InP-InGaAs...
QWIP focal plane arrays on InP substrates for single and dual band thermal imagers
Eker, S. U.; Arslan, Y.; Kaldirim, M.; Beşikci, Cengiz (Elsevier BV, 2009-11-01)
Alternative material systems on InP substrate provide certain advantages for mid-wavelength infrared (MWIR), long-wavelength infrared (LWIR) and dual band MWIR/LWIR quantum well infrared photodetector (QWIP) focal plane arrays (FPAs). While InP/InGaAs and InP/InGaAsP LWIR QWIPs provide much higher responsivity, when compared to the AlGaAs/CaAs QWIPs, AllnAs/InGaAs system facilitates completely lattice matched single band MWIR and dual band MWIR/LWIR FPAs.
Citation Formats
S. U. Eker, Y. Arslan, and C. Beşikci, “High speed QWIP FPAs on InP substrates,” INFRARED PHYSICS & TECHNOLOGY, pp. 209–214, 2011, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45726.