Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor
Date
2013-06-20
Author
Sonmezoglu, S.
Alper, S.E.
Akın, Tayfun
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
223
views
0
downloads
Cite This
This paper presents a high performance, automatic mode-matched, single-mass, and fully-decoupled MEMS gyroscope with improved scale factor stability. The mode-matching system automatically achieves and maintains the matching between the drive and sense mode resonance frequencies with the help of dedicated frequency tuning electrodes (FTEs). This method isolates the drive and sense mode frequency response dynamics by keeping the proof mass voltage (V PM ) constant, improving the scale factor stability up to 4.4 times in a temperature range from -20°C to +80°C while maintaining a wide rate bandwidth (above 50 Hz). The presented gyroscope also achieves a very low bias instability of 0.73°/hr and an angle random walk (ARW) of 0.024°/√hr.
Subject Keywords
MEMS gyroscope
,
Gyroscope
,
Mode-matching
,
Scale factor temperature stability
URI
https://hdl.handle.net/11511/45721
DOI
https://doi.org/10.1109/transducers.2013.6627318
Collections
Department of Electrical and Electronics Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
A symmetric surface micromachined gyroscope with decoupled oscillation modes
Alper, Said Emre; Akın, Tayfun (2001-06-14)
This paper reports a new symmetric gyroscope structure that allows not only matched resonant frequencies for the drive and sense vibration modes for better resolution, but also decoupled drive and sense oscillation modes for preventing unstable operation due to mechanical coupling. The symmetry and decoupling features are achieved at the same time with a new suspension beam design. The gyroscope structure is designed using a standard three-layer polysilicon surface micromachining process (MUMPs) and simulat...
A Digitally Controlled FM MEMS Gyroscope System
Yeşil, Ferhat; Akın, Tayfun; Department of Electrical and Electronics Engineering (2023-1-24)
This dissertation presents a digitally controlled high performance FM MEMS gyroscope system with improved short and long term stability for tactical and near navigation grade applications. The digital gyroscope system has a number of advantages such as simplified electronic hardware, small size, low power, and increased flexibility with software programming for easy configuration for different operation conditions, real-time advanced calibration, and extensive testability. The system is implemented with a l...
A high-performance silicon-on-insulator MEMS gyroscope operating at atmospheric pressure
Alper, Said Emre; Azgın, Kıvanç; Akın, Tayfun (Elsevier BV, 2007-03-30)
This paper presents a new, high-performance silicon-on-insulator (SOI) MEMS gyroscope with decoupled oscillation modes. The gyroscope structure allows it to achieve matched-resonance-frequencies, large drive-mode oscillation amplitude, high sense-mode quality factor, and low mechanical cross-talk. The gyroscope is fabricated through the commercially available SOIMUMPS process of MEMSCAP Inc. The fabricated gyroscope has minimum capacitive sense gaps of 2.6 mu m and a structural silicon thickness of 25 mu m,...
A single-crystal silicon symmetrical and decoupled MEMS gyroscope on an insulating substrate
Alper, Said Emre; Akın, Tayfun (2005-08-01)
This paper presents a single-crystal silicon symmetrical and decoupled (SYMDEC) gyroscope implemented using the dissolved wafer microelectromechanical systems (MEMS) process on an insulating substrate. The symmetric structure allows matched resonant frequencies for the drive and sense vibration modes for high-rate sensitivity and low temperature-dependent drift, while the decoupled drive and sense modes prevents unstable operation due to mechanical coupling, achieving low bias-drift. The 12-15-mu m-thick si...
AN AUTOMATIC ACCELERATION COMPENSATION SYSTEM FOR A SINGLE-MASS MEMS GYROSCOPE
Gavcar, H. D.; Azgın, Kıvanç; Alper, S. E.; Akın, Tayfun (2015-06-25)
This paper presents the architecture and experimental verification of an automatic acceleration compensation system applied to a single-mass MEMS gyroscope. The proposed method eliminates low frequency proof mass motion of the gyroscope due to external accelerations, suppressing the g-sensitivity of the gyroscope bias up to 12 times. This is achieved by dedicated acceleration cancellation electrodes ( ACEs) for the first time in the literature, eliminating any degradation of the sensor bias stability and no...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Sonmezoglu, S. E. Alper, and T. Akın, “A high performance automatic mode-matched MEMS gyroscope with an improved thermal stability of the scale factor,” 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/45721.