Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Bioattenuation of Detergent Plant Effluents Enhanced via Single Microbial Augmentations
Date
2016-05-01
Author
İçgen, Bülent
Goksu, Lale
Ulusoy, Huseyin
Yılmaz, Fadime
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
195
views
0
downloads
Cite This
Due to natural attenuation, anionic detergents in surface waters are not inferred as big environmental issues. However, the effluents from large industrial areas with high detergent concentrations can have significant local impacts. These circumstances can be diminished by using efficient detergent-degrading bacterial isolates through bioaugmentation. In this study, detergent plant effluents were analysed by using a methylene blue active substance assay to determine detergent content during natural attenuation processes, and after single augmentations of 12 anionic detergent-degrading bacterial isolates with high detergent tolerating abilities in batch microcosms. Maximum bioattenuation of detergents was determined as 56 % after 66 h incubation under the conditions that mimicked the natural environment. Bioattenuation was enhanced as much as 83 and 91 % in 78 h incubation time through single microbial augmentations of filter-sterilized and non-sterilized effluents, respectively. Eight Pseudomonas and one Aeromonas species were found to be highly competitive by showing high biodegradation abilities in pure culture experiments as well as enhancing degradation of detergents in both filter-sterilized and non-sterilized effluents through their single augmentations. Although remaining three isolates, namely Pseudomonas fluorescens SDS6, P. resinovorans SDS10-2, and P. corrugata SDS10-3 displayed lower degrading abilities in pure culture experiments than the natural attenuation, they later turned out to be actively enhancing the degradation of detergents during their single augmentations.
Subject Keywords
Physical and Theoretical Chemistry
,
General Chemical Engineering
,
Surfaces, Coatings and Films
URI
https://hdl.handle.net/11511/46312
Journal
JOURNAL OF SURFACTANTS AND DETERGENTS
DOI
https://doi.org/10.1007/s11743-016-1791-1
Collections
Department of Environmental Engineering, Article
Suggestions
OpenMETU
Core
Diesel Oil Degradation Potential of a Bacterium Inhabiting Petroleum Hydrocarbon Contaminated Surface Waters and Characterization of Its Emulsification Ability
Onur, Gozde; Yılmaz, Fadime; İçgen, Bülent (Wiley, 2015-07-01)
Degradation of poorly water soluble hydrocarbons, like n-alkanes and polycyclic aromatic hydrocarbons are challenged by some bacteria through emulsification of hydrocarbons by producing biosurfactants. In diesel oil bioremediation, diesel oil degrading and surfactant producing bacteria are used to eliminate these pollutants from contaminated waters. Therefore, identifying and characterizing bacteria capable of producing surfactant and degrading diesel oil are pivotal. In this study, bacteria isolated from h...
Catalytic ozonation of synthetic wastewaters containing three different dyes in a fluidized bed reactor
Balcı, Ayşe İrem; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2011)
Environmental regulations have imposed limitations on a wide variety of organic and inorganic pollutants in industrial textile wastewaters. There are several degradation methods used in literature studies. Among these methods ozonation is one of the most considered way to degrade refractory chemicals in textile wastewaters. In recent years, catalytic ozonation as being one of the advanced oxidation processes (AOPs), is applied to reduce the ozone consumption and to increase the Chemical Oxygen Demand (COD) ...
Dehydration of alcohol solutions obtained from a solvent recovery process by pervaporation
Büküşoğlu, Emre; Yılmaz, Levent; Department of Chemical Engineering (2010)
Solvent recovery is gaining importance in the chemical production processes to reduce the costs and because of environmental concerns. Therefore separation schemes for recovery and recycle of solvents used in printing and packaging industry were developed. However, a low value by-product, mainly ethyl alcohol and isopropanol, is obtained during the solvent recovery process. If the water concentration of this mixture is decreased below 0.1% by weight, the value of it increases significantly. To dehydrate thi...
Triclosan removal by nanofiltration from surface water
Öğütverici, Abdullah; Yetiş, Ülkü; Dilek, Filiz Bengü; Department of Environmental Engineering (2013)
Nowadays, organic pollutants occurring in surface waters have raised substantial concern in public. Triclosan (TCS) is one of the antimicrobial agents which are utilized in both domestic and industrial application. In this study nanofiltration (NF) of TCS in surface water was investigated. Laboratory scale cross-flow device is operated in total recycle mode and DK-NF and DL-NF membranes were used. Kesikköprü Reservoir (Ankara) water was used as raw water. Effect of natural organic matter (NOM) content of ra...
Environmental Applications of Natural Zeolites
Kazemian, Hossein; Gedik, Kadir; İmamoğlu, İpek (2012-01-01)
Environmental pollution particularly at very low concentrations is very difficult to remove from contaminated media. Adsorption by means of relatively inexpensive natural adsorbents such as zeolites can be considered as a cost effective alternative treatment of such contaminated streams. The unique chemical and structural characteristics of natural zeolites made them potential materials for a multitude of environmental applications where materials are needed for effective binding, adsorbing, and filtering. ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
B. İçgen, L. Goksu, H. Ulusoy, and F. Yılmaz, “Bioattenuation of Detergent Plant Effluents Enhanced via Single Microbial Augmentations,”
JOURNAL OF SURFACTANTS AND DETERGENTS
, pp. 637–644, 2016, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46312.