A heterogeneous fleet liner ship scheduling problem with port time uncertainty

We deal with a schedule design problem for a heterogeneous fleet liner shipping service under uncertain waiting and handling times at ports. In a liner shipping service, longer than expected waiting and handling times at a port may cause a delay from scheduled departure time. We consider the problem to find the departure times at ports and sailing times of ships between ports so that the total fuel burn is minimized while targeted overall service level (a performance measure based on on-time departure probabilities) is achieved. We consider two new aspects of the problem. The first one is the heterogeneous fleet where each ship type may have different fuel efficiency, i.e. a different fuel burn function. The second one is considering critical ports on the route, i.e. considering the fact that on-time performance at some critical ports might be more important for the shipping company. We propose a model which finds different service levels for different ship type-port pairs by considering importance of ports and fuel efficiencies of ships. We also give a new overall service level measure for the entire route by combining service levels for different ship type-ports pairs. We propose a chance constrained nonlinear mixed integer programming formulation for the problem. Finally, we give computational results that show the effects of several experimental factors on fuel consumption, speed and service level.


Akyılmaz, M. Özdemir (JSTOR, 1994-05-01)
One way of reducing the unit cost of shipment by a motor carrier is to consolidate many LTL (less-than-truck-load) shipments. Explicit information on the route structure is a prerequisite to the understanding of the costs of the services provided and to the planning of the allocation of the equipment and personnel among the terminals. In this paper, an approach for routeing the LTL shipments is presented and is applied to a hypothetical network. Solution results of this example show that the algorithm offer...
Heuristic approaches for solid transportation-p-facility location problem
Das, Soumen Kumar; Roy, Sankar Kumar; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2020-09-01)
Determining optimum places for the facilities and optimum transportation from existing sites to the facilities belongs to the main problems in supply chain management. Thesolid transportation-p-facility location problem(ST-p-FLP) is an integration between thefacility location problemand thesolid transportation problem(STP). This paper delineates the ST-p-FLP, a generalization of the classical STP in which location ofp-potential facility sites are sought so that the total transportation cost by means of conv...
Integrated aircraft and passenger recovery with cruise time controllability
Arikan, Ugur; Gürel, Sinan; Akturk, M. Selim (Springer Science and Business Media LLC, 2016-01-01)
Disruptions in airline operations can result in infeasibilities in aircraft and passenger schedules. Airlines typically recover aircraft schedules and disruptions in passenger itineraries sequentially. However, passengers are severely affected by disruptions and recovery decisions. In this paper, we present a mathematical formulation for the integrated aircraft and passenger recovery problem that considers aircraft and passenger related costs simultaneously. Using the superimposition of aircraft and passeng...
A flexible reference point-based multi-objective evolutionary algorithm: An application to the UAV route planning problem
DAŞDEMİR, ERDİ; Köksalan, Mustafa Murat; TEZCANER ÖZTÜRK, DİCLEHAN (Elsevier BV, 2020-02-01)
We study the multi-objective route planning problem of an unmanned air vehicle (UAV) moving in a continuous terrain. In this problem, the UAV starts from a base, visits all targets and returns to the base in a continuous terrain that is monitored by radars. We consider two objectives: minimizing total distance and minimizing radar detection threat. This problem has infinitely many Pareto-optimal points and generating all those points is not possible. We develop a general preference-based multi-objective evo...
The planar hub location problem: a probabilistic clustering approach
İyigün, Cem (Springer Science and Business Media LLC, 2013-12-01)
Given the demand between each origin-destination pair on a network, the planar hub location problem is to locate the multiple hubs anywhere on the plane and to assign the traffic to them so as to minimize the total travelling cost. The trips between any two points can be nonstop (no hubs used) or started by visiting any of the hubs. The travel cost between hubs is discounted with a factor. It is assumed that each point can be served by multiple hubs.
Citation Formats
S. Gürel, “A heterogeneous fleet liner ship scheduling problem with port time uncertainty,” CENTRAL EUROPEAN JOURNAL OF OPERATIONS RESEARCH, pp. 1153–1175, 2019, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/46401.